
Module Control of the jFEX
for the ATLAS Calorimeter

Trigger Upgrade

by

Rouven Spreckels
n3vu0r@qu1x.org

Diploma Thesis in Physics

3rd June 2016

Supervisor

Prof. Dr. Stefan Tapprogge

mailto:Rouven Spreckels <n3vu0r@qu1x.org>

2

Abstract

The ATLAS experiment at the Large Hadron Collider (LHC) is a general-
purpose particle detector searching for new fundamental physics discoveries.
The LHC and the ATLAS detector will be upgraded to reach higher luminosi-
ties and finer granularities, respectively. To maintain trigger efficiency, new
subsystems will be installed as part of the upgrade, such as the Jet Feature
Extractor (jFEX). It will identify in real-time jets and τ particles and calcu-
late energy sums with the data received from electromagnetic and hadronic
calorimeters by running its algorithms on multiple processor FPGAs. The
implementations and configurations of these algorithms are provided by a
single control FPGA accessed through a central control interface. For rea-
sons of flexibility, this control FPGA is placed on a mezzanine card based on
a hybrid system on a chip (SoC), combining an FPGA and a CPU inside a
single chip with many interconnects in between. This thesis presents the de-
sign of this mezzanine card and the software developed to demonstrate use
cases of the hybrid SoC approach.

3

4

Statutory Declaration

I hereby confirm that I have written the present thesis independently and
without illicit assistance from third parties and using solely the aids men-
tioned.

Mainz, 3rd June 2016

Rouven Spreckels

5

6

Contents

1 Overview 9

2 Introduction 11

2.1 Large Hadron Collider . 11

2.2 ATLAS Experiment . 13

2.2.1 Detector . 13

2.2.2 Trigger and Data Acquisition . 14

2.2.3 Calorimeter Trigger . 15

2.2.4 Calorimeter Trigger Upgrade . 17

2.3 Jet Feature Extractor . 18

3 Hardware Design 21

3.1 Design Specification . 21

3.1.1 Central Control Interface . 22

3.1.2 Intra-Board Communication . 23

3.1.3 Debugging Facilities . 24

3.2 Conceptual Design . 24

3.3 First Iteration . 28

4 Software Development 31

4.1 Workflow Kit . 32

4.1.1 Dependency Resolution . 32

4.1.2 Modification Management . 34

7

8 CONTENTS

4.1.3 Development Process . 36

4.1.4 Toolchain Encapsulation . 37

4.2 CPU/FPGA Communication . 38

4.2.1 Communication Protocol . 39

4.2.2 Memory Mapping . 41

4.2.3 Master Implementation . 47

4.2.4 Slave Implementation . 50

4.2.5 File Transfer Application . 53

4.3 Clock Generation . 56

4.3.1 Register Map Creation . 57

4.3.2 Register Map Conversion . 64

4.3.3 Transition Map Generation . 68

4.3.4 Device Control . 73

5 Tests & Results 77

5.1 Booting the Operating System . 77

5.2 Testing the CPU/FPGA Communication 83

5.2.1 Data Integrity Verification . 84

5.2.2 Write Rate Measuring . 86

5.2.3 Read Rate Measuring . 90

5.3 Testing the I2C Communication . 94

5.4 Controlling the Clock Generator . 97

5.4.1 Built-in Routines . 98

5.4.2 Register & Transition Maps . 101

6 Conclusion & Outlook 109

Chapter 1

Overview

The ATLAS experiment [1] at the Large Hadron Collider (LHC) [2] is a general-
purpose particle detector searching for new fundamental physics discoveries while
further investigating the properties of its recent discoveries [3], whether predicted
by the Standard Model or beyond of it. To study elementary particles and their
fundamental interactions, they are accelerated to high kinetic energies in order to
let them collide and to analyze their products. The ATLAS detector [1] generates
data for each detected event resulting in such high data rates, unmanageable to be
stored for long-term analyzes. Thus, a trigger system [4] is used to select in real-time
the rare interesting events giving hints to new physics, reducing the effective data
rates down to a manageable level. In order to make trigger decisions in real-time,
custom-made electronics are used to meet the necessary discriminatory power. The
LHC and the ATLAS detector were and will further be upgraded to reach higher
luminosities and finer granularities, respectively [5]. Thus, the trigger system was
and will further be upgraded as well to manage the increased data rates generated
by the detector. The trigger system is divided into calorimeter and muon triggers.
The Jet Feature Extractor (jFEX) [6] currently being designed will augment the
modules of the present calorimeter trigger as part of the next upgrade to meet the
need for more discriminatory power. It will identify in real-time jets and τ parti-
cles and calculate energy sums with the data received from the electromagnetic and
hadronic calorimeters of the detector by running its algorithms on multiple FPGAs,
here referred to as processor FPGAs. The implementations and configurations of
these algorithms are provided by a single control FPGA accessed through a cen-
tral control interface. For reasons of flexibility, this control FPGA is placed on a
daughter module, a so-called mezzanine card. This mezzanine card further controls
several subcomponents of the jFEX. It populates a hybrid system on a chip (SoC),

9

10 CHAPTER 1. OVERVIEW

combining an FPGA and a CPU inside a single chip with many interconnects in be-
tween. The following chapter 2 introduces the jFEX while describing its integration
into the ATLAS experiment at the LHC. I have collaborated on the hardware design
of the mezzanine card which is presented in chapter 3, while chapter 4 covers the
software I have developed to demonstrate use cases of the hybrid SoC approach re-
garding the module control of the jFEX. Finally, I have tested the mezzanine card
in combination with the developed software as described in chapter 5, followed by a
conclusion and outlook in chapter 6.

Chapter 2

Introduction

The Standard Model of particle physics has successfully explained and predicted
many experimental results like the discovery of the Higgs boson in 2012 [3]. But
for beyond of what this theory is capable to explain like dark matter particles, ongo-
ing research is necessary to further develop its description of elementary particles
and their fundamental interactions. To study their laws of nature, particles are ac-
celerated to high kinetic energies in order to let them collide and to analyze their
products. Many interesting particles are only produced at high collision energies.
The challenge is to select the rare interesting events giving hints to new physics.

2.1 Large Hadron Collider

The Large Hadron Collider (LHC) [2] is located at the European Organization for
Nuclear Research (CERN)1 near Geneva, Switzerland. As of writing time, it is the
world’s largest and most powerful particle collider, lying 100 meters beneath ground
in a tunnel of 27 kilometers in circumference. It accelerates hadrons, specifically
protons or lead ions, in two adjacent parallel beam pipes of opposite directions.
These pipes intersect at four points allowing the beams to collide within the de-

1 The original “Conseil Européen pour la Recherche Nucléaire” (CERN) was dissolved [7].

11

12 CHAPTER 2. INTRODUCTION

tectors of the four main experiments ATLAS2, CMS3, ALICE4, and LHCb5 each lo-
cated at an intersection point, as shown in figure 2.1. First two are general-purpose
particle detectors while last two are more specialized ones.

Figure 2.1: LHC Overview [2]

The beam parameters of the operational runs of proton-proton collisions are shown
in table 2.1, which are the center-of-mass energy√s , the instantaneous luminosity6

L, and the average number of interactions per bunch-crossing 〈µ〉 along with its peak
value µmax. A long shutdown between the runs is used to install upgrades in order
to reach the increased parameters.

2 A Toroidal LHC ApparatuS (ATLAS) is a general-purpose detector experiment [2].
3 The Compact Muon Solenoid (CMS) is a general-purpose detector experiment [2].
4 A Large Ion Collider Experiment (ALICE) is a specialized detector for heavy ions [2].
5 The LHC beauty (LHCb) experiment is a specialized detector for B mesons [2].
6 The luminosity L = 1

σ
dN
dt is the rate of events produced per second dN

dt and cross-section σ.

2.2. ATLAS EXPERIMENT 13

Run Years √
s (TeV) L (1034 cm−2s−1) 〈µ〉 µmax

1 2010-2012 ≤ 8 0.77 21 36
Phase-0 Upgrade during Long Shutdown 1 (LS1)

2 2015-2017 13 ∼ 1.6 40 ∼ 60
Phase-1 Upgrade during Long Shutdown 2 (LS2)

3 2020-2022 13 ∼ 2.5 60 ∼ 80
Phase-2 Upgrade during Long Shutdown 3 (LS3)

4 2025-2027 14 ∼ 5.0 140 ∼ 200

Table 2.1: LHC Evolution [5]

2.2 ATLAS Experiment

The goals of the ATLAS experiment are to search for new discoveries and further
investigate its recent discoveries like the properties of the Higgs boson [1]. Ongoing
measurements will allow in-depth analyzes of the Standard Model and beyond of it.

2.2.1 Detector

The ATLAS detector [1] shown in figure 2.2 is composed of concentric cylinders sur-
rounding an intersection point of the LHC where the proton beams collide. Its main
components are the inner detector, the inner electromagnetic calorimeter (ECAL),
the outer hadronic calorimeter (HCAL), and the outermostmuon spectrometer. Each
is specialized to detect certain types and properties of particles, complementing to a
general-purpose detector in a whole by covering various particles with a broad range
of energies.

14 CHAPTER 2. INTRODUCTION

Figure 2.2: ATLAS Detector [1]

The inner detector is the closest to the proton beam with a gap of only a few centime-
ters. It tracks charged particles in order to reconstruct their trajectories. Due to a
magnetic field within the inner detector, these trajectories are curved. Their direc-
tion and degree of curvature reveals the sign of the charge and the momentum of a
particle, respectively. The two calorimeters measure energy absorptions of particle
showers caused by interactions with their material. The initial energy of particles
is inferred by sampling their showers. The inner calorimeter covers electromag-
netic interactions and the outer calorimeter covers strong interactions. The muon
spectrometer functions similarly to the inner detector by curving the trajectories of
muons with a magnetic field in order to measure their momentum.

2.2.2 Trigger and Data Acquisition

According to the Technical Design Report (TDR) for the Phase-1 upgrade of the AT-
LAS Trigger and Data Acquisition (TDAQ) system [4], the LHC collides two bunches
of protons every 25 ns resulting in 40 million bunch-crossings in a second, that is a
bunch-crossing rate of 40 MHz. For each bunch-crossing the data generated by the
several sub-detectors sum up to about 2.4 MB after zero suppression. This results
in an unmanageable data rate of roughly 40 MHz · 2.4 MB = 96 TB/s. Since not all

2.2. ATLAS EXPERIMENT 15

events are interesting, a pipelined trigger system of multiple stages is used to select
in real-time the potentially interesting events and their regions of interest (RoIs)
within the detector. This reduces the effective event rate and its corresponding data
rate step by step down to a manageable level of roughly 2.4 GB/s to be stored for
long-term analyzes, as shown in table 2.2.

Stage Trigger Rate Data Rate
Detector Read-Out 40MHz 96TB/s

Level-1 Accepts 100 kHz 240GB/s
High-Level Requests 40 kHz 60GB/s

Event Building 12 kHz 29GB/s
Event Filtering 1 kHz 2.4GB/s

Table 2.2: Trigger & Data Rates during Run 2 [4]

The trigger system is divided into two levels of event selection, the Level-1 (L1) and
the High-Level Trigger (HLT). The L1 is implemented using custom-made electron-
ics based on ASICs7 and FPGAs8 while the HLT is based on farms of commercially
available computers and networking hardware. Each stage of table 2.2 reduces the
effective event rate giving the algorithms of the next stage respectively more time
to analyze the data with more complex algorithms and more precise selection cri-
teria. The L1 trigger, divided into calorimeter trigger (L1Calo) and muon trigger
(L1Muon), has less than 2.5µs per bunch-crossing to make its decisions and to trans-
fer its results to theHLTwhile it is concurrently fed by the data stream of the current
bunch-crossing due to being a pipelined system.

2.2.3 Calorimeter Trigger

The Level-1 Calorimeter Trigger (L1Calo) currently being used during Run 2, that
is after the Phase-0 upgrade [4], identifies e/γ and τ particles9 with the data re-
ceived from the ECAL and HCAL. Furthermore, it identifies jets and events of large
missing transverse energy Emiss

T (XE) along with its significance XS, and large total
transverse energy

∑
ET (TE). The architecture of the L1Calo system is shown in

figure 2.3.

7 An application-specific integrated circuit (ASIC) is an IC manufactured for a custom use.
8 A field-programmable gate array (FPGA) is an IC customizable after manufacturing.
9 Not distinguishing between e−, e+, and γ while only identifying hadronically decaying τ .

16 CHAPTER 2. INTRODUCTION

Figure 2.3: L1Calo System Architecture during Run 2 [4]

The L1Calo system receives analogue signals from the ECAL and HCAL. The Pre-
Processor Modules (PPMs) digitize them with a sampling rate of 80 MHz and send
them to the Cluster Processor (CP) subsystem and to the Jet Energy Processor (JEP)
subsystem. Each subsystem consists ofmultiplemodules, 56 Cluster ProcessorMod-
ules (CPMs) and 32 Jet Energy Processor Modules (JEMs), respectively. They are
installed in a crate and connected through its backplane. Each CPM identifies and
counts energy deposits indicative of isolated e/γ and τ particles within a given area
of the calorimeter data while each JEM identifies jets and calculates partial energy
sums of missing transverse energy Emiss

T and total transverse energy
∑
ET . Both

subsystems build Trigger Objects (TOBs) comprising location, energy, object type,
XE, XS, and TE. They are sent at 160 MHz over the backplane of the crate to 12
Common Merger Extended Modules (CMXs), 8 for the CP subsystem and 4 for the
JEP subsystem. The CMXs merge the TOBs of the two subsystems and route them
optically to the L1 Topological Processor (L1Topo). Additionally, they send object
counts to the L1 Central Trigger Processor (L1CTP). The L1Topo combines these
TOBs with the ones of the L1Muon in order to make trigger decisions based on the
full event topology. Its resulting decision bits are sent to the L1CTP. On a L1 Accept
(L1A), that is the L1CTP considered events to be of interest, all modules of the sub-
systems are read-out via Read-Out Drivers (RODs). They collect all read-out data
plus RoIs, manage data buffering and flow control, and build event packets to be
sent to the HLT and Data Acquisition (DAQ) system.

2.2. ATLAS EXPERIMENT 17

2.2.4 Calorimeter Trigger Upgrade

The L1Calo system will be upgraded in the LS2 between Run 2 and 3 as part of the
Phase-1 upgrade [4, 6]. According to table 2.1, the LHC will further increase its
luminosity resulting in an increased number of interactions per bunch-crossing for
Run 3. This will require more discriminatory power to maintain trigger efficiency.
Thus, a new set of Feature Extractor (FEX) subsystems will be installed, processing
calorimeter data of finer granularity with larger-area algorithms. It allows to select
events more precisely, reject more background, and cover larger jets than with the
JEP subsystem. Due to the increased number of interactions, improved pile-up cor-
rections will be implemented as well. The architecture of the L1Calo system to be
used during Run 3, that is after the Phase-1 upgrade, is shown in figure 2.4.

Figure 2.4: L1Calo System Architecture during Run 3 [6, modified]

The FEX subsystems are the electromagnetic Feature Extractor (eFEX) of 24 mod-
ules, the jet Feature Extractor (jFEX) of 7modules, and the global Feature Extractor
(gFEX) of a single module. The eFEX and jFEX will replace the CP and JEP, respec-
tively while the gFEX will identify features requiring the whole calorimeter data.

18 CHAPTER 2. INTRODUCTION

The FEX subsystems will operate in parallel with the CP and JEP subsystems until
their outputs will have been validated. To meet the requirements of higher through-
put rates due to data of finer granularity, the ECAL will provide signals over optical
fibers, digitized and duplicated for each FEX module by a new on-detector Digi-
tal Processing System (DPS). In contrast, the HCAL signals will be digitized by the
PPMs and duplicated by a new daughter module of the JEMs. The optical fibers will
be routed to an optical plant in order to map them in such a way that each eFEX
and jFEXmodule is fed with data partially overlapping with the data of neighboring
modules. This inter-module redundancy is required by their algorithms, processing
the data in moving intervals of two dimensions, so-called sliding windows. In con-
trast, the single module of the gFEX subsystem is fed with the whole calorimeter
data.

2.3 Jet Feature Extractor

As part of the ATLAS calorimeter trigger upgrade of section 2.2.4, the jFEX subsys-
tem [6] will identify in real-time large energy deposits and calculate missing trans-
verse energiesEmiss

T and total transverse energies
∑
ET with the data received from

the electromagnetic and hadronic calorimeters. These energy deposits are indica-
tive of jets and τ particles. The jFEX subsystem comprises 7 jFEX modules. Each
will run multiple versions of the sliding window algorithm in parallel on its four
processor FPGAs in order to identify the energy deposits from the calorimeter data,
as described in its specification draft [6]. They will be installed in a crate and con-
nected through its backplane. The simplified real-time data path of the jFEX is
shown in figure 2.5. The optical plant routes the data of the ECAL and HCAL to
the jFEX subsystem. Each jFEX module has 5 optical receiver modules per proces-
sor FPGA. Each receiver module has 12 optical channels, summing up to 240 opti-
cal input fibers in total per jFEX module. The optical receiver modules are routed
to high-performance Multi-Gigabit Transceivers (MGTs) of the processor FPGAs.
These MGTs will operate at transfer rates of up to 12.8 Gbit/s, while lower rates of
11.2 Gbit/s and 9.6 Gbit/s will be considered as well [8].

2.3. JET FEATURE EXTRACTOR 19

Figure 2.5: Real-Time Data Path of the jFEX

Furthermore, the MGTs are capable of simultaneously looping incoming data back
[9]. The resulting duplicated data is routed to neighboring processor FPGAs form-
ing a shared data ring between them as visualized by the dotted arrows in figure 2.5.
This intra-module redundancy complements the inter-module redundancy used by
some versions of the sliding window algorithm. The resulting TOBs of the processed
data are transferred to the L1Topo. Since this will take less bandwidth, only a sin-
gle optical transmitter module per processor FPGA is required, summing up to 48
optical output fibers per jFEX module. Additionally, each jFEX module provides the
read-out connectivity to the RODs via MGTs through the backplane. Furthermore,
a daughter module, here referred to as mezzanine card, provides a central control
interface through the backplane in order to control the jFEX and all its subcompo-
nents like a clock generator, the optical transceivers, and several power modules.

20 CHAPTER 2. INTRODUCTION

Chapter 3

Hardware Design

The module control of the jFEX of section §2.3 is implemented by a daughter mod-
ule, a so-called mezzanine card. Its hardware design has been done in collaboration
with Reinhold Degele who did the schematics, component placement, wire routing,
and soldering supervised by Dr. Ulrich Schäfer. I did the conceptual design while
complying to the given design specification, chose and ordered the electrical com-
ponents including a further daughter module, designed its power sequencing, and
created a net list to interface it.

3.1 Design Specification

Besides having algorithms running on processor FPGAs1 of the jFEX to make time
critical trigger decisions based on calorimeter data received over the real-time data
path, other tasks and subcomponents have to be controlled and monitored as well.
This is done by a central control FPGA. For reasons of flexibility this control FPGA
is placed on a mezzanine card pluggable to the jFEX main board. Firstly, these
algorithms must be programmed to the processor FPGAs at each power cycling. The
implementation of an algorithm is stored in a so-called bit stream file. The expected
file sizes are about 80 MB per processor FPGA, summing up to roughly 320 MB in
total for all four FPGAs. Thus, a local storage which can be kept up to date by remote
updates seems appropriate. To program an FPGA, such a bit stream file must be

1 Processor FPGAs are of either UltraScale VU190 or UltraScale+ XCVU9P from Xilinx [10].

21

22 CHAPTER 3. HARDWARE DESIGN

transferred over a dedicated parallel bus. In order to not wait a quarter of an hour or
more to power cycle the jFEX, the final transfer rate of loading the bit stream files
from the internal storage and copying them over to the FPGAs should be several
MB/s. It is also desired to monitor the operational states of the algorithms and
to tweak their behavior by adjusting some parameters at run time. This requires
additional connectivity to all processor FPGAs. For this and especially for the real-
time data path, high-performance Multi-Gigabit Transceivers (MGTs) of the FPGAs
are used to meet the required transfer rates of up to 12.8 Gbit/s. For such high
transfer rates over long distances, optical fibers are used instead of electrical wires
for external communication by routing the MGTs to optical transceiver modules.
These modules can be controlled by the I2C bus [11]. Since the incoming amount of
data is higher then processed output data, transfer rate requirements for receivers
and transmitters are not necessarily equal. The ATLAS TDAQ system [4] requires
communication to be synchronous. Therefore, an I2C-programmable clock generator
is used to derive synchronous clocks of different frequencies from a global input clock.
In addition, this clock generator is capable of reducing possible jitter2 of the input
clock. Furthermore, the I2C bus is used to monitor various supply voltages of the
power modules.

3.1.1 Central Control Interface

Due to its ubiquitous nature and therefore proven reliability and availability, Eth-
ernet was chosen for the central control interface. Commonly used communication
protocols are the Transmission Control Protocol (TCP) [12] and the User Datagram
Protocol (UDP) [13]. While former guaranties in-order packet delivery by detecting
packet losses and managing retransmissions itself, its implementation for an FPGA
would be of a more complex state machine compared with latter protocol combined
with sequential packet IDs for dropped packet recovery. Hence, an UDP based im-
plementation called IPBus [14] was developed by the Bristol University and the
Imperial College London, originally for the Triggering and Data Acquisition System
(TriDAS) of the CMS experiment. It was agreed to be the standard communication
protocol for controlling FPGA based hardware within the ATLAS TDAQ system [4].

2 Jitter is an undesired deviation in periodicity of communication signals.

3.1. DESIGN SPECIFICATION 23

3.1.2 Intra-Board Communication

For controlling and monitoring the processor FPGAs, their built-in Multi-Gigabit
Transceivers (MGTs) are used, allowing high transfer rates by using only six wires
to each processor FPGA. Using differential signaling3, one differential pair serves
as clock while two further pairs allow full-duplex4 serial communication.

In order to control and monitor several ICs5 of the jFEX like the clock generator, the
optical transceivers, and the power modules, the Inter-Integrated Circuit (I2C) bus
is used. It is a serial bus of two wires labeled SDA and SCL. Former transmits data
synchronously to a clock of latter. It follows a master/slave model. Thus, a chain
of ICs can be connected to the same two wires. Both wires are open-drain, that is
they can only be driven low or left open. In latter case, resistors pull the wires high.
Low and high are interpreted as logical “0” and logical “1”, respectively. A master
starts a transaction to either read from or write to a slave, referred to as master
read (MR) and master write (MW) mode. A slave serves these requests by writing
or reading the data, referred to as slave write (SW) and slave read (SR) mode. A
transaction is composed of an address byte and one or more data bytes transferred
with the most significant bit (MSB) first, each followed by an acknowledge bit, “0”
for acknowledging and “1” for not acknowledging. A byte is of 8 bits. The address
byte contains a 7-bit slave address followed by a direction bit, “0” for writing to and
“1” for reading from a slave. When a slave detects its address, it is free to ignore a
master request by not acknowledging the address byte, causing the master to abort
the transaction. In MRmode the master acknowledges a byte to request the slave to
write another one. Thus, each byte except the last is acknowledged. In contrast, in
SR mode the slave acknowledges a byte to signify the master being able to read an-
other one. Thus, each byte is acknowledged, but only in exceptional cases like a full
data buffer a byte is not acknowledged, causing the master to abort the transaction.
Additionally, one or more transactions are encapsulated by a frame of start and stop
conditions while a repeated start condition separates multiple transactions within a
frame. This allows multiple masters connected to the same bus by ensuring a mas-
ter cannot start a transaction within a sequence of transactions of another master.
A start condition is issued by firstly pulling the SDA wire low and then pulling the

3 Differential signaling uses two electrically complementary signals.
4 A full-duplex communication allows data transfer in both directions simultaneously.
5 An integrated circuit (IC) is composed of electronic circuits on a compact chip.

24 CHAPTER 3. HARDWARE DESIGN

SCL wire low while a stop condition is issued by firstly releasing the SDA wire and
then releasing the SCL wire. Various speed modes are defined, among others, with
standard mode of 100 kbit/s and fast mode of 400 kbit/s.

3.1.3 Debugging Facilities

A universal asynchronous receiver/transmitter (UART) is a hardware module for
serial communication commonly included in microcontrollers6 and CPUs. Due to
its simplicity it suits well for early stage debugging like a boot process of a CPU.
A configurable number of data bits can be sent, usually eight bits, but five to nine
bits are possible as well. If not nine bits are chosen, an optional parity bit7 can be
appended giving a chance of error detection. These data bits along with an optional
parity bit are encapsulated by a start bit of value “0” and one or two stop bits of
value “1”. A value of “0” or “1” is represented by a low or high signal, respectively.
Thus, when idle, the signal is kept high to be able to detect a start bit. The frame
of start and stop bits is required for synchronization since there is no clock signal.
A voltage level translator [15] fulfills the electrical characteristics defined by the
Recommended Standard 232 (RS-232) for serial communication commonly used for
serial ports of computers. Alternatively, the Universal Serial Bus (USB) can be
interfaced with the help of an onboard USB-to-UART bridge [16].

3.2 Conceptual Design

An FPGA allows customizable, true parallel, and accurately timed digital signal
processing (DSP), making it a first-choice core component of hardware designs with
focus on time critical signaling and long-term use. But tasks of less time accuracy
like accessing an SD card8 or processing data on a higher level to control modules
like a clock generator are well suited to a CPU running an operating system with
a whole ecosystem of applications and libraries. To use advantages of both worlds,
a CPU and an FPGA, communication between them is required to delegate tasks
or share data. Instead of using separate chips for CPU and FPGA with externally

6 A microcontroller is a compact computer with I/O peripherals on a single IC.
7 A parity bit indicates whether the number of data bits with value “1” is even or odd.
8 A Secure Digital (SD) card is an exchangeable non-volatile data storage device.

3.2. CONCEPTUAL DESIGN 25

hardwired connectivity, a more flexible alternative was chosen, a hybrid system on
a chip (SoC), combining an FPGA and a CPU inside a single chip with many cus-
tomizable interconnects in between. In regard to a short development time, the
first iteration of the mezzanine card does not populate this hybrid SoC on its own,
instead it is interfaced through a daughter system on a module (SoM) from Avnet
called PicoZed 7Z030 [17] based on a hybrid SoC from Xilinx called Zynq XC7Z030
[18]. The PicoZed is plugged onto the mezzanine card, already fulfilling the electri-
cal requirements of the Zynq. In figure 3.1 the block diagram of the mezzanine card
is shown. The brown, dark green, and light green boxes represent a simplified jFEX
main board, mezzanine card, and PicoZed daughter module, respectively while each
is plugged onto the other. The purple box within the light green one represents the
Zynq with its CPU in blue and its FPGA in red, referred to as processing system
(PS) and programmable logic (PL), respectively. Components are colored blue or red
whether they are chained with the CPU or the FPGA, respectively while components
being chained with both or being connectible to both are colored purple like the Zynq.

Though the first iteration of the jFEX will have wire routings for all four processor
FPGAs, it will be populated with only two of them to firstly gain experience with ini-
tial tests. Thus, only connectivity for two processor FPGAs is required for the first
iteration of the mezzanine card. The PicoZed series was chosen over another SoM
series from Avnet called MicroZed [19], since that series does not provide MGTs,
which are required to control and monitor the processor FPGAs. Two of four avail-
able MGTs of the PicoZed are reserved for the processor FPGAs while a third one is
connected to a PHY9 for Ethernet communication via FPGA. This PHY is populated
on the mezzanine card and exposed by an Ethernet jack also known as RJ45 connec-
tor. Another Ethernet jack is connected to a PHY of the PicoZed allowing Ethernet
communication via CPU. This whole setup is supposed to be installed in a crate of
multiple devices being interfaced through the crate backplane (BP). Among other
connectivity, this backplane is connected through the jFEX to a third Ethernet jack
in purple of the mezzanine card. Its purpose is to be either connected to the Ether-
net jack of the FPGA in red or to the Ethernet jack of the CPU in blue. In this way,
as a precautionary measure regarding possible future changes to the central control
interface of section 3.1.1, it is possible to choose between FPGA based or CPU based
control through the backplane by using an Ethernet cable instead of multiple 0Ω

9 A physical layer device (PHY) implements the physical layer of a communication protocol.

26 CHAPTER 3. HARDWARE DESIGN

resistor jumpers on the mezzanine card. In any case, the Ethernet jack of the CPU
is used as development and maintenance interface.

Figure 3.1: Block Diagram of the Mezzanine Card

Though the mezzanine card is supposed to be plugged onto the jFEX, it can operate
without it as well, allowing standalone tests. Thus, it is powered by either the jFEX
or an external power supply connected to its power jack. Both 12 V supply voltages,
the one of the jFEX and the one of the external power supply, are connected to a
chain of further power supplies [20] of the mezzanine card represented by the light
green box in figure 3.1, each regulating a different supply voltage. Two diodes pro-
tect the 12 V power supplies from each other in case both are connected at the same
time. Each power supply of the chain can be enabled by raising its input pin labeled
“EN”. It will indicate when its power is good (PG), that is its voltage has stabilized,
by raising an output pin labeled “PG”. When power cycling the mezzanine card, the

3.2. CONCEPTUAL DESIGN 27

PicoZed is permanently supplied with 5 V. But supplying its banks10 is required to
be delayed until the internally regulated supply voltages of the PicoZed have sta-
bilized. Furthermore, it is advised to supply MGT voltages in a sequence from low
to high voltages to reduce current drawn during power up [21]. As visualized in
figure 3.1, the PicoZed exposes a signal labeled “Free”, indicating when the mezza-
nine card is free, in a sense of being allowed, to supply the banks. This signal is
connected to the input pin “EN” of the first power supply of the chain, enabling one
power supply after another by cascading the output pins “PG” of each power supply
to the input pin “EN” of the next power supply in the sequence they are supposed to
power up. The output pin “PG” of the last power supply of the chain is connected to
the signal of the PicoZed labeled “Good” to finally enable the Zynq after all supply
voltages have been stabilized, which are 1.0 V for MGT transceivers, 1.2 V for MGT
termination circuits, 1.8 V for high-performance banks11, 2.5 V for the PHY of the
mezzanine card, and 3.3 V for high-range banks12 in the order mentioned.

The Zynq boots from one of two SD cards via an SDIO port expander [22] serving
as voltage level translator as well. The SD card is selected by two jumpers, the
second SD card serves as fallback system. Since the PicoZed provides an USB On-
The-Go (OTG) interface, an appropriate micro-AB USB plug was populated on the
mezzanine card. The two UART modules of the Zynq are connected to a RS-232
voltage level translator, each exposed by a header13 of three pins, two for receiver
(Rx) and transmitter (Tx) plus one for ground (GND). Additionally, one of these
UART modules can be connected to a USB-to-UART bridge via 0Ω resistor jumpers,
exposed by an micro-B USB plug. As further debugging facilities, an array of eight
switches and an array of eight LEDs, connected to the FPGA, can be used as quick
configuration and status indicator, respectively.

All connectivity of the header connector14 to the jFEX is additionally exposed on
separate headers and connectors to allow standalone tests of the mezzanine card.
Two I2C modules of the CPU and eight I2C modules possibly implemented by the
FPGA are exposed by an array of headers of three pins each, two for SDA and SCL
plus one for GND. Each of the two MGTs for the processor FPGAs can be accessed

10 A bank of an FPGA is a group of I/O pins sharing common resources like a supply voltage.
11 The PicoZed exposes 100 high-performance (HP) [23] user PL I/O pins.
12 The PicoZed exposes 35 high-range (HR) [23] user PL I/O pins.
13 A pin header or simply header is of one or more rows of pins.
14 A header connector is meant to be plugged onto a header.

28 CHAPTER 3. HARDWARE DESIGN

by a SATA15 connector when configuring their 0Ω resistor jumpers appropriately,
allowing a loop back test with a crossover SATA cable. The differential MGT refer-
ence clock is available by two SMA connectors16. The JTAG17 debug interface of the
Zynq, cascaded with the processor FPGAs of the jFEX to be part of a boundary scan,
is exposed by a separate header as well.

3.3 First Iteration

The first iteration of the mezzanine card is shown in figure 3.2. Its two SD card
slots are on the right above the Ethernet jack of the CPU. On the left of this jack are
seven of the eight I2C headers of the FPGA. The eighth one was placed more to the
left near the JTAG header. The two I2C headers of the CPU are below the two golden
SMA connectors for the differential MGT reference clock. The SATA connectors of
the two MGTs are on the left below the power jack and above the switch and LED
arrays. The Ethernet jack of the backplane is on the left bottom. The USB cable on
the top is connected to the USB-to-UART bridge with the USB OTG plug on its left
and the Ethernet jack of the FPGA on its right. The PicoZed can be plugged onto
the three white headers.

15 Serial AT Attachment (SATA) [24] is a computer bus interfacing mass storage devices.
16 SubMiniature version A (SMA) connectors are commonly used for coaxial cables.
17 The Joint Test Action Group (JTAG) [25] interface allows testing of IC interconnects.

3.3. FIRST ITERATION 29

Figure 3.2: Mezzanine Card

At the time of finishing the hardware design of the mezzanine card, the pin layout
of the header of the jFEX, to connect the mezzanine card onto, was not yet finalized.
To not postpone the production and debugging of the mezzanine card, it was decided
to drop its header connector, but for the first iteration only.

30 CHAPTER 3. HARDWARE DESIGN

Chapter 4

Software Development

In order to test, control, and advance the mezzanine card of section §3.3, several
software packages have been developed for long-term use including a workflow kit
named Zed Tool (z2l), a helper tool polling for pluggable devices named plug, a file
transfer application between CPU and FPGA named Feedback Synchronized I/O
(fsio), and a controller of the clock generator named si53xx. These software pack-
ages including their sources are provided on a compact disk (CD) attached to this
thesis. Additionally, each software package is hosted on a web server at following
addresses:

https://qu1x.org/z2l

https://qu1x.org/plug

https://qu1x.org/fsio

https://qu1x.org/si53xx

They have been developed with focus on reusability and extendibility in mind by
structuring their source code hierarchically from abstract interfaces down to con-
crete implementations while not sacrificing performance to allow flexible and exten-
sible use cases. Finally, libraries are served with general-purpose applications to
ease use of them while these applications and libraries along with manual pages
and quick introductions are distributed in a package format allowing automated
configuration and compilation with the help of the GNU Build System also known
as the Autotools [26]. Compact algorithms and interfaces, only parts of the source
code with a so-called high expressiveness, are shown, allowing their motivational
description to reason and explain the conceptional choices of the software design in
a whole, being an essential part of this thesis, and to finally serve as documenta-

31

https://qu1x.org/z2l
https://qu1x.org/plug
https://qu1x.org/fsio
https://qu1x.org/si53xx

32 CHAPTER 4. SOFTWARE DEVELOPMENT

tion for further development. Software was developed with Debian Jessie (amd641)
[27] as operating system and was additionally tested with PetaLinux 2015.4 (arm-
linux-gnueabi2) [28] from Xilinx, an embedded operating system running on the
mezzanine card.

4.1 Workflow Kit

Development for the hybrid SoC Zynq is composed of three major processes. The con-
figuration of an FPGA is represented by a bit stream file described by a hardware
abstraction language (HDL). This bit stream file can be generated by the Vivado
Design Suite [29] from Xilinx. The CPU runs an embedded operating system called
PetaLinux. It can be customized and compiled with the PetaLinux Tools from Xil-
inx. On top of this operating system, user application software is installed. These
applications are cross-compiled with the help of the GNU Build System also known
as the Autotools. All these three toolchains, the Vivado Design Suite, the PetaLinux
Tools, and the Autotools store their configurations, source files, and destination files
in their own project folders. While cross-compiling application software is almost
independent from configurations of the other two projects, the PetaLinux Tools re-
quire configurations to be imported from the Vivado Design Suite project in order
to appropriately customize the operating system. To manage all three projects and
automate their integration into each other to speed up the development process, the
software package Zed Tool (z2l) has been developed.

4.1.1 Dependency Resolution

Zed Tool combines all three projects into a single higher-level project. It resolves
dependencies between the three toolchains by automatically invoking them to gen-
erate their destination files from their source files, like the bit stream from the HDL
sources, a boot image and a root file system image of the operating system from its
source code and configuration files, and the application binaries from their source
code files. Such automation is possible thanks to Vivado being based on a scripting

1 The AMD64 port supports the 64-bit version of the x86 instruction set.
2 The arm-linux-gnueabi cross-compiler target without hard-float support is used.

4.1. WORKFLOW KIT 33

language called Tool Command Language (TCL) [30] allowing it to be invoked with-
out its graphical user interface (GUI). The three projects along with their toolchains,
Vivado Design Suite, PetaLinux Tools, and Autotools are referred to as hardware
(HW), firmware (FW), and software (SW) projects, respectively. Their own depen-
dencies between destination and source files and their inter-project dependencies
are visualized in figure 4.1. Zed Tool automatically resolves these dependencies by
comparing timestamps of destination files with the ones of their source files. When
a destination file is older than one of its source files, it will be regenerated by invok-
ing its appropriate tool. A common tool for resolving such file dependencies is called
GNU Make [31]. The dependencies are described by a so-called Makefile which is
parsed by this tool. Alternatively, a self-executable Makefile automatically invokes
Make when it will be executed, which is the case for Zed Tool. The three dependency
stages, HW in blue, FW in green, and SW in orange of figure 4.1 are represented by
their destination files in dark blue, dark green, and dark orange, respectively while
their sources are lightly colored. The normal green colored components compose
the dark green ones, indicated by having no gap between them. Continuous arrows
are intra-project dependencies while dashed arrows are inter-project dependencies,
these are destinations being sources of other projects. While the SW stage is sim-
ply represented by application binaries without inter-project dependencies, the HW
stage is made up of two destination files, a bit stream file and a hardware description
file, not to be confused with the HDL files. Both are sources of the FW stage.

Figure 4.1: Dependency Graph

34 CHAPTER 4. SOFTWARE DEVELOPMENT

While the bit stream depends on both HDL and block design files, the hardware de-
scription file is independent of HDL files. Block designs can describe interconnects
between CPU and FPGA and are used to configure hardware interfaces like I2C or
UART modules. They are made up of Intellectual Property Cores (IP Cores) which
can be instantiated by selecting them from the Vivado IP Catalog. A remarkable
property of this dependency graph is that there is no single dependency from left
to right, arrows only point from right to left. Thus, when only HDL files change,
it is not necessary to invoke the tools for regenerating the root image, which would
actually invoke a lot of other internal Makefiles of the PetaLinux Tools to recheck all
destinations for their possibly updated sources, which are the first stage boot loader
(FSBL) [32], the Universal Boot Loader (U-Boot) [33] also known as “Das U-Boot”,
the device tree [34], the Linux kernel [35], and all the system tools included in the
root file system, which requires time. The FSBL and the U-Boot are actually compo-
nents of the boot image but they are generated by the root image generation process
and just copied over when generating the boot image. The FSBL in conjunction with
the U-Boot make up a two stage boot loader to load the kernel which parses the de-
vice tree providing information about available hardware and their configurations.
Finally, the kernel mounts the root file system and starts several system services.
The problem is, when Vivado is invoked to regenerate the bit stream due to changed
HDL files, it additionally regenerates the hardware description file though no block
design files have changed. This would unnecessarily trigger the regeneration of the
root image. To prevent this, the hardware description file is duplicated by Zed Tool
but only when block design files have changed. This duplicate is used as HW des-
tination instead of the original one which is unnecessarily regenerated each time
HDL files have changed. In this way, the development process is speed up by sav-
ing the time of the root image generation process each time HDL files but no block
design files have changed. After regenerating the bit stream due to changed HDL
files, only the boot image generation process is triggered which is of almost no time
compared with the root image generation process.

4.1.2 Modification Management

Besides improvements regarding development time by focusing on the sources them-
selves instead of remembering how and when to regenerate their destinations, an-
other goal of Zed Tool is to make image generation reproducible which is indispens-
able for long-term use and maintenance. It allows to distribute the higher-level
project as source files only, being lightweight compared with the final size of a whole
operating system. The Vivado Design Suite already allows separation of source and

4.1. WORKFLOW KIT 35

destination folders while the Autotools have routines to clean up the project folder
from its destination files. Though the PetaLinux Tools have similar clean up rou-
tines, there are still a lot of generic files left. Thus, Zed Tool manages saving, load-
ing, editing, and diffing3 of essential configuration files of PetaLinux and its various
subsystems, which are the FSBL, the U-Boot, the device tree, the Linux kernel,
and the system tools to be included in the root file system. Since Zed Tool is a
self-executable Makefile, it accepts only targets, besides options for Make itself, as
command line arguments, which are nothing else than destination files or aliases
of destination files. It is also possible to define so-called phony targets not being
related to a file in order to implement commands. Zed Tool provides a GNU Bash4

completion script as well. When writing z2l in a terminal prompt followed by dou-
ble pressing TAB, the terminal will suggest all available alias targets for Zed Tool,
as shown in figure 4.2. The five targets fw.edit.plt, fw.edit.ubl, fw.edit.dts,
fw.edit.lnx, fw.edit.rfs allow editing the FSBL, the U-Boot, the device tree, the
Linux kernel, and the system tools to be included in the root file system, respectively
while fw.edit.sys allows to edit the configuration of PetaLinux itself and fw.edit
invokes all previously mentioned targets one after the other. Changes made, are
directly stored in the project folder of the PetaLinux Tools. After confirming their
functionality by testing these modifications, they can be saved to a separate PetaL-
inux source folder created by Zed Tool by invoking fw.save. In case these modi-
fications caused more problems instead of reducing them, they can be revoked by
loading the previous configurations of the source folder with fw.load. When a lot of
modifications have been done at once, the target fw.diff gives an overview of them
by only printing the differences of configurations in the destination folder compared
with the ones in the source folder, allowing to confirm them before possibly saving
them with fw.save. In contrast, HWmodifications can be done by launching Vivado
with its GUI and letting it automatically open the HW project by invoking the target
hw.edit.

3 Comparing two files with a common tool called diff [36].
4 GNU Bash [37] is the default Unix shell of Debian for interactive terminals.

36 CHAPTER 4. SOFTWARE DEVELOPMENT

Figure 4.2: Usage of Zed Tool

4.1.3 Development Process

To actually test modifications, not only those to PetaLinux configurations but also
modifications to HW or SW projects, the appropriate modified destination files have
to be transferred to the target device, the mezzanine card. What can cause a lot of
trouble is when modifications have been done but some modified destination files
have been forgotten to be transferred. This gives the impression that these modifi-
cations either have no effect since they have actually not been applied or break the
system since they have actually been applied only partially. Zed Tool keeps track
of all modified destination files with the help of a common tool called rsync [38]. It
allows local or remote updates by synchronizing a destination folder regarding its
source folder by a technique called rolling checksum. Additionally, it provides a so-
called dry-run mode simulating a synchronization to confirm nothing unintended
will accidentally happen. Thus, to automatically transfer all modified destination
files or to only simulate it, the targets push or dry-push are used, respectively. For
doing the opposite, that is making a backup of the target device, the targets pull
and dry-pull are available. In case the bit streamwas modified, a reboot is required
to reprogram the FPGA, which can be triggered with the reboot target. In order to

4.1. WORKFLOW KIT 37

monitor the boot process, an UART or an UART over USB terminal connection can
be establish with a common terminal emulator called picocom by invoking the tty
target. After the device has booted, a more reliable TCP terminal connection can be
establishedwith the help of a common tool called Secure Shell (SSH) [39] by invoking
the ssh target. All this can be done at once by passing these targets to Zed Tool from
left to right in the order they should be invoked with a command line prompt of z2l
push reboot tty ssh. There is one problem, after triggering a reboot, the UART de-
vice vanishes causing the tty target to fail. To solve this, a helper script was written
polling for the UART device until it is available again. Due to its general-purpose
usability this script is separately distributed as the software package plug. When
the boot process has finished, the terminal can be exited by pressing CTRL+A+X. Af-
terwards, the SSH terminal is established for testing the modified applications. Be-
sides synchronization of the whole destination folder, partial transfers can be done
with the sftp target as well, making use of the SSH File Transfer Protocol. On-the-
fly modifications of configuration files at the target device are also possible over this
protocol. Thanks to the default file browser of Debian called Nautilus, these remote
files can transparently be accessed like local files. The destination files of the three
dependency stages HW, FW, and SW have corresponding alias targets hw, fw, and sw,
respectively. First one is practical to test if modifications to HDL and block design
files are valid without triggering the regeneration of the root image when the inten-
tion is to continue modifying these HW sources. The targets sw.PKG, sw.clean.PKG,
and sw.distclean.PKG behave similarly to the standard Make targets all, clean,
and distclean of the software package labeled “PKG”, respectively. The targets sw,
sw.clean, and sw.distclean invoke the corresponding targets of all available soft-
ware packages. The first of these, sw.PKG or sw, additionally installs the software
package or all software packages to the local destination folder, respectively. It can
then be synchronized with the remote destination folder. Another helper script, in-
voked with target zelsius but in contrast to plug being distributed with z2l, reads
out the raw temperature data of the Zynq analog-to-digital converter (XADC) and
prints the calculated SoC temperature in millidegree Celsius on the screen.

4.1.4 Toolchain Encapsulation

Further handy features of Zed Tool are encapsulating environment settings, re-
quired to be loaded before the Vivado Design Suite and the PetaLinux Tools can
be executed, and to serve the addresses of license servers and paths to license files,
required for certain features or IP Cores of the Vivado Design Suite. This encap-
sulation is necessary, since otherwise these settings would break functionality of

38 CHAPTER 4. SOFTWARE DEVELOPMENT

other tools. For instance, the order in which library paths are scanned is changed
to make PetaLinux Tools work, but causes subsequent invocations of other tools to
fail. Thus, for each executable, Zed Tool installs a so-called wrapper script launch-
ing a sub-process and changing only the environment of this sub-process, which
then invokes the corresponding executable. When terminated, the sub-process will
be terminated as well, but the environment settings of the main process, the actual
terminal, were not being touched.

4.2 CPU/FPGA Communication

In order to use the advantages of both a CPU and an FPGA, communication be-
tween them is required to delegate tasks or share data. The so-called physical ad-
dress space of the CPU has a reserved address range to access dedicated registers
of the FPGA. Since the CPU runs an operating system whose kernel uses a mem-
ory management technique called virtual memory [40], only kernel modules have
direct access to the physical memory while application software must map physical
addresses to their virtual address space. This mapping is done by the system call5

mmap [41]. It takes a physical address as argument and returns an appropriate vir-
tual address used by the software application. When accessing the virtual address,
it is translated to the physical address and its data might be cached by the ker-
nel, resulting in a possibly delayed, so-called indirect memory access. Thus, there
are two ways of establishing a communication channel, developing either a kernel
module or an application software library managing the memory mapping. While a
kernel module might promise higher transfer rates and less latency due to its direct
memory access (DMA), interfacing the DMA API6 [42] of the kernel is a more com-
plex task requiring more parameters to be studied, resulting in longer development
time and increased maintenance effort in case of new kernel versions. In contrast,
setting upmemory mapped channels is more flexible requiring no additional param-
eters among the address ranges to be mapped, each specified by its base address
and width. For these reasons, implementing memory mapping by an application
software library was chosen. Thus, the software package fsio has been developed.

5 A system call allows application software to request a certain service from the kernel.
6 An application programming interface (API) provides routines to use a software component.

4.2. CPU/FPGA COMMUNICATION 39

Along with its library libfsio, it contains two binaries, fsio and fsio-tvgen. For-
mer is a file transfer application while latter is a test vector7 generator.

4.2.1 Communication Protocol

Due to the nature of caching and clock domain crossing between CPU and FPGA,
reading data from and writing data to the FPGAmust be synchronized by an out-of-
band8 handshake9 signal to avoid data corruption. For example, writing data from
the CPU to the FPGAmust be finished before the FPGA reads it, otherwise the data
might be partially out of date. Thus, the CPU has to inform the FPGA when it is
allowed to read the data by toggling a separate handshake signal after the data has
been written. But just executing one write instruction after another is not enough,
since caching does not guarantee to strictly preserve their order. A solution to this
problem is, to continuously read the written data back on a separate mapping and
compare them until they are equal, before executing another instruction. Hence the
name Feedback Synchronized I/O (fsio) was chosen for this software package.

To make the communication stateless regarding the actual value of the handshake
signal, a master/slave model was chosen with the CPU as master and the FPGA as
slave. That means, only the CPU is allowed to toggle the handshake signal. In this
way, an application does not need to remember the previous value each time it will
be executed. Instead, it can just read it from the FPGA after mapping a channel
without otherwise potentially missing a handshake toggle. Thus, there are four
routines, master write (MW), slave read (SR), master read (MR), and slave write
(SW). First two are used to write to the FPGA while last two are used to read from
the FPGA, as illustrated in figure 4.3 and 4.4, respectively. In both figures, the CPU
on the left and the FPGA on the right represent an unidirectional communication
channel. The arrows indicate the two feedback loops of each figure, one for the data
and one for the handshake. A loop has both input and output mappings, labeled “fsi”
and “fso” for the data, and “hsi” and “hso” for the handshake, respectively. What is
labeled as input for the CPU, is labeled as output for the FPGA, and vice versa.
Time flows from top to bottom, except for the orange colored feeding which is done
continuously on the FPGA and alternately with the handshake polling on the CPU.

7 A test vector is made up of specific input data to test a given software component.
8 An out-of-band signal exchanges information in a separate channel from the data stream.
9 A handshake allows requesting and acknowledging chunks of data between two entities.

40 CHAPTER 4. SOFTWARE DEVELOPMENT

Figure 4.3: Writing To the FPGA

The master write routine firstly writes the data, and repeatedly reads it back until
they are equal. Then it toggles the handshake signal requesting the FPGA to read
the data. Afterwards, the slave read routine of the FPGA acknowledges the request
by feeding back the toggled handshake signal for which the CPU is waiting for by
polling it.

Figure 4.4: Reading From the FPGA

4.2. CPU/FPGA COMMUNICATION 41

In contrast, the master read routine firstly toggles the handshake signal requesting
the FPGA to write data while the CPU repeatedly feeds it back. The slave write rou-
tine of the FPGA compares the written with the fed back data until they are equal.
Afterwards, it acknowledges the request by feeding back the toggled handshake sig-
nal, allowing the CPU to finally read the data.

4.2.2 Memory Mapping

The software tool used to create FPGA designs is the Vivado Design Suite from
Xilinx. Interconnects from FPGA to CPU are described by a so-called block de-
sign, as shown in figure 4.5. The block “processing_system7_0” represents a re-
duced interface of the CPU while the registers to be mapped are represented by the
blocks “axi_gpio_0”, “axi_gpio_1”, “axi_gpio_2”, “axi_gpio_3”, and “axi_gpio_4”, here
referred to as AXI GPIO maps. Blocks are Intellectual Property Cores (IP Cores).
They can be instantiated by selecting them from the Vivado IP Catalog. The five
AXI GPIO maps are instances of the AXI GPIO IP Core10, connected to the CPU
via the Advanced eXtensible Interface (AXI) of the Advanced Microcontroller Bus
Architecture (AMBA). While the CPU acts as AXI master, the five maps act as AXI
slaves. The block “processing_system7_0_axi_periph” between themmanages mem-
ory mapped transfers of one or more masters to one or more slaves.

10 TheAXIGPIO IPCore [43] allows general-purpose I/O (GPIO) CPU/FPGA interconnectivity.

42 CHAPTER 4. SOFTWARE DEVELOPMENT

Figure 4.5: CPU/FPGA Interconnects [29]

As shown in figure 4.6, a map provides a so-called dual channel mode. This allows
the first channel to be input only and the second channel to be output only. This suits
the proposed protocol well since one of the two channels can be used as feedback loop
reducing the number of maps to not bloat the block design.

4.2. CPU/FPGA COMMUNICATION 43

Figure 4.6: Map Customization [29]

The first of the five maps is the handshake map with a single input and a single out-
put signal labeled “hsi” and “hso” while the other maps for the actual data are made
up of 32 signals each, labeled “fsi” and “fso” followed by the instance number, again
for input and output, respectively. A map is of a maximum width of 4 B. Synchro-
nizing multiple of these data maps at once, would ideally increase the throughput
rate by a factor of the map count. But a CPU can execute instructions only sequen-
tially, apart from some exceptions. However, the reduced number of handshakes
would still increase the throughput rate up to a certain saturation. Besides this,
there might be another effect. Due to the delay of indirect memory access, these
sequential instructions might effectively appear parallel on the FPGA in case the
time difference between them is smaller. The delay might neither be constant nor
precisely predictable due to complex underlying kernel architectures like caching
mechanisms. But in principle the throughput rate might increase the more maps
are synchronized at once, until the time differences of instructions sum up to the
delay, resulting in saturation. Thus, this design contains multiple data maps for
a single handshake map, here referred to as a communication channel of widths
4 · 4 B = 16 B. Though it has input and output mappings, it is unidirectional since
one direction is used as feedback only.

44 CHAPTER 4. SOFTWARE DEVELOPMENT

After composing a channel, that is instantiating one handshake and one or more
data maps, the base addresses of the single maps are displayed in the “Address
Editor” tab of Vivado, labeled “Offset Address” as shown in figure 4.7.

Figure 4.7: Map Addresses [29]

In algorithm 4.1, these addresses along with the widths of the channel maps make
up the channel description file intended to be parsed by the library libfsio. To
access the second channel of a dual channel map, an offset of 8 B is added to the
base address of the first channel as described in the product guide [43] of the AXI
GPIO IP Core.

Algorithm 4.1 Channel Description

1 <fsio>

2 <hs i="0x41200000" o="+0x8" width="1"/>

3 <fs i="0x41210000" o="+0x8" width="4"/>

4 <fs i="0x41220000" o="+0x8" width="4"/>

5 <fs i="0x41230000" o="+0x8" width="4"/>

6 <fs i="0x41240000" o="+0x8" width="4"/>

7 </fsio>

While libfsio iterates over the nodes of the XML11 tree with the help of a common
C++12 library called libpugixml [44], it maps the addresses of each node and creates
the communication channel as a composition of them in an object-oriented manner.
Hence, a map is reflected by a C++ class named “fsio_map” while a channel is re-
flected by a class named “fsio”. An instance of latter class owns multiple instances
of former class. While the AXI GPIO IP Core supports sizes from 1 to 32 signals rep-
resented by the CPU as 1 to 32 bits, the library distinguishes only between sizes of

11 The Extensible Markup Language (XML) [45] encodes data human- and machine-readable.
12 C++ [46] is a multi-paradigm general-purpose programming language.

4.2. CPU/FPGA COMMUNICATION 45

the standard exact-width integer types of the C++ language, these are std::uint8_t,
std::uint16_t, std::uint32_t, and std::uint64_t with 1, 2, 4, and 8 bytes in size,
respectively. The last one is supported just in case future versions of the IP Core are
extended to 64 bits. Accessing bits notmapped by the IP Core is safe, writing to them
has no effect and reading from them results in zero values. Supporting only these
sizes and not arbitrary byte sizes is due to the fact that the class “fsio_map” is actu-
ally a template class to be instantiated with one of these types as parameter. This
has the advantage that its implementation template, as shown in algorithm 4.2, can
make use of simple assignment and comparison operators of integer types instead of
using variably sized assignment and comparison functions like void* memcpy(void*
dest, const void* src, std::size_t count) and int memcmp(const void* lhs,
const void* rhs, std::size_t count), which would iterate over each single byte
sacrificing performance for three reasons, function call overhead, managing a loop
counter, and more important, unnecessarily more often triggering the underlying
architecture of the virtual address translation.

Algorithm 4.2 Part of Map Implementation Template

64 auto size() const -> std::size_t override { return sizeof (T); }

65 void wave() override { *o = data = !data; }

66 #if FSIO_STAT

67 void feed() override { ++poll; *o = data = *i; }

68 auto back() -> bool override { ++poll; return data == *i; }

69 #else

70 void feed() override { *o = data = *i; }

71 auto back() -> bool override { return data == *i; }

72 #endif

73 auto stat() -> std::size_t {

74 auto poll = this->poll;

75 this->poll = 0;

76 return poll;

77 }

78 void own() override { data = *i; }

79 auto get(void* data) const -> std::size_t override {

80 *((T*)data) = this->data;

81 return sizeof (T);

82 }

83 auto put(const void* data) -> std::size_t override {

84 *o = this->data = *((const T*)data);

85 return sizeof (T);

86 }

46 CHAPTER 4. SOFTWARE DEVELOPMENT

This template of type parameter “T” implements the functionality of both handshake
and data maps. The variables “i” and “o” are pointers to the virtual addresses of the
input and output mappings. To access their value they are pointing to, they must
be dereferenced by applying the “*” operator. The variable “data” is of type “T” and
locally stores the value of the map. In case of a handshake map, “data” represents
the value of the handshake signal, otherwise the value of a data map. The method
wave() in line 65 does the handshake toggling by firstly toggling “data” locally before
writing it to the mapped register. The methods feed() and back() in line 70 and
71 implement the feedback loop. Former feeds data back to the FPGA and latter
compares written data with data fed back by the FPGA. Both are used by data maps
while latter is additionally used by handshake maps to poll for an acknowledgement
previously requested by the method wave(). Their alternative implementations in
line 67 and 68, optionally selected by a compile-time switch --enable-stat, addition-
ally count how often each method was called to give increased statistics for perfor-
mance measurements. Finally the methods auto get(void* data) const -> std
::size_t and auto put(const void* data) -> std::size_t in line 79 and 83 read
from and write to the local storage “data” by taking a pointer to a data buffer as
argument while returning the size of bytes they have accessed of it, which actually
is the size of the local storage “data”.

To be able to compose a communication channel of differently sized maps, the class
“fsio” defines an abstract interface “fsio::map”, shown in algorithm 4.3, which is im-
plemented by the template class “fsio_map”, abstracting away its concrete type. In
this way, the class “fsio” can transparently call methods of the class “fsio_map” with-
out knowing about its concrete type, increasing the readability of the implementa-
tion of the proposed protocol.

4.2. CPU/FPGA COMMUNICATION 47

Algorithm 4.3 Abstract Map Interface

50 class fsio {

51 class map {

52 public:

53 virtual ~map() {};

54 virtual auto size() const -> std::size_t = 0;

55 virtual void wave() = 0;

56 virtual void feed() = 0;

57 virtual auto back() -> bool = 0;

58 virtual auto stat() -> std::size_t = 0;

59 virtual void own() = 0;

60 virtual auto get(void* data) const -> std::size_t = 0;

61 virtual auto put(const void* data) -> std::size_t = 0;

62 };

4.2.3 Master Implementation

The class “fsio” reflects a channel of one handshake and one or more data maps, in-
terfaced through the abstract class “fsio::map”. The implementation of the master
write routine of the proposed protocol is shown from line 146 to 151 of algorithm
4.4. It firstly writes the data in chunks of its data map sizes by iterating over them
and calling their write method through the abstract interface, io->put(data). This
method returns the size of the current map which is used to increment the data
pointer. All data maps are stored in the vector “fs” whose single elements are ac-
cessed by its iterator “io”. Afterwards, the helper method back() is called, again
iterating over all data maps to compare their feedback with their local data storage
until equality.

48 CHAPTER 4. SOFTWARE DEVELOPMENT

Algorithm 4.4 Master Write (MW) Routine

121 void fsio::back() const {

122 for (bool back = false; !back; wait()) {

123 back = true;

124 for (auto& io: fs)

125 if (!io->back())

126 back = false;

127 }

128 wave();

129 }

146 auto fsio::put(const void* data) const -> std::size_t {

147 for (auto& io: fs)

148 data = (const char*)data + io->put(data);

149 back_data ? back() : wave();

150 return fs_size;

151 }

Finally, another helper method wave(), shown in line 75 of algorithm 4.5, is called
requesting the FPGA to read the data and waiting for its acknowledge. It firstly
toggles the handshake by calling hs->wave(), being the request. Then it polls its
feedback until equality by calling hs->back(), being the acknowledge. Each poll can
be delayed by the method wait(). This delay is customizable. But if no delay is de-
sired, themethod call overheadwould still result in an unnecessary delay. Thus, this
method must be enabled by a compile-time switch --enable-wait. If not enabled, it
is replaced by an ASM13 instruction, as shown in line 71 of algorithm 4.5. Now the
implementation of the method wave() is directly given in the C++ header file, allow-
ing the compiler to substitute its content at its point of call instead of performing
the method call [47]. Instead of an empty implementation, the ASM instruction is
necessary, cause otherwise the for-loop in line 75 would have an empty body, that
is having no instructions at all and since the hs->back() method has no other side
effects in case previously mentioned statistics are not enabled by the compile-time

13 An assembly (ASM) language corresponds to the instruction set of a particular CPU.

4.2. CPU/FPGA COMMUNICATION 49

switch --enable-stat, the compiler would be allowed to optimize the for-loop away
[48], fatally ignoring the handshake acknowledge.

Algorithm 4.5 Handshake Routine

68 #if FSIO_WAIT

69 void wait() const;

70 #else

71 void wait() const { __asm__ __volatile__ ("" ::: "memory"); };

72 #endif

73 void feed() const;

74 void back() const;

75 void wave() const { for (hs->wave(); !hs->back(); wait()); };

The implementation of the master read routine of the proposed protocol is shown
from line 139 to 144 of algorithm 4.6. In contrast, in line 140 it firstly performs the
handshake while alternately feeding read data back to the FPGA with the help of
the method feed(), defined from line 112 to 119.

Algorithm 4.6 Master Read (MR) Routine

112 void fsio::feed() const {

113 auto feed = [this] () {

114 for (auto& io: fs)

115 io->feed();

116 };

117 for (hs->wave(), feed(); !hs->back(); wait())

118 feed();

119 }

139 auto fsio::get(void* data) const -> std::size_t {

140 feed_data ? feed() : wave();

141 for (auto& io: fs)

142 data = (char*)data + io->get(data);

143 return fs_size;

144 }

This method defines another helper function iterating over all data maps and call-
ing their feed method, io->feed(). After the handshake routine is done, that means

50 CHAPTER 4. SOFTWARE DEVELOPMENT

it requested the FPGA to write data and waited for its acknowledgment of comple-
tion, it finally reads the data in chunks of its data map sizes by iterating over them
and calling their read method, io->get(data). This method returns the size of the
current map which is used to increment the data pointer.

4.2.4 Slave Implementation

The slave implementation of the protocol for the FPGA is written in a hardware
description language (HDL) called Very High Speed Integrated Circuit Hardware
Description Language (VHSIC HDL), or just VHDL [49]. The top level VHDL file
can access the mapped registers by instantiating the block design. Each map pro-
vides its own pair of input and output signal vectors. Thus, the handshake map is
represented by two vectors of length 1 while a data map is represented by two vec-
tors of length 32. The vectors of the four data maps can be merged to two vectors
of length 4 · 32 = 128, one merging the input and the other merging the output vec-
tors. Hence, the communication channel is represented by two handshake vectors
of length 1, or just the two signals themselves, “hsi” and “hso”, and two vectors of
length 128, “fsi” and “fso”.

To read from a channel, its vectors are connected to the entity “fsio_get” implement-
ing the slave read routine, shown in algorithm 4.7. The generic constants “cap” and
“len” must be adjusted for a given channel. While “cap” is the width of the channel,
“len” might be chosen smaller in case not all signals of the channel are used. The
data can be read from the vector “dat” of length “len”. When data is available, the
signal “req” is set. This request can be acknowledged when the vector “dat” has been
read by setting the signal “ack” for exactly one clock cycle. It causes the signal “req”
to be reset. The clock signal “clk” must be connected to the AXI clock of the block
design.

4.2. CPU/FPGA COMMUNICATION 51

Algorithm 4.7 Slave Read (SR) Routine

23 entity fsio_get is

24 generic (

25 cap: integer := CAP;

26 len: integer := LEN

27);

28 port (

29 clk: in std_logic;

30 hsi: in std_logic;

31 hso: out std_logic;

32 fsi: in std_logic_vector(cap - 1 downto 0);

33 fso: out std_logic_vector(cap - 1 downto 0);

34 dat: out std_logic_vector(len - 1 downto 0);

35 req: out std_logic;

36 ack: in std_logic

37);

38 end fsio_get;

39

40 architecture behavioral of fsio_get is

41 begin

42 dat <= fso(len - 1 downto 0);

43 req <= hso xor hsi;

44 fso <= fsi;

45 ctl: process(clk)

46 begin

47 if rising_edge(clk) then

48 hso <= hso xor (req and ack);

49 end if;

50 end process ctl;

51 end behavioral;

The data written by the CPU is continuously fed back in line 44. A request is de-
tected in line 43 by a combinational logic of an Exclusive OR (XOR) gate14 with “hsi”
and “hso” as inputs and “req” as output. Its truth table is shown in table 4.1. When
the CPU toggles the handshake signal, “hsi” changes compared with “hso”. Thus, a
request is given for case 2 and 3 of the truth table setting “req”.

14 A logic gate implements a logical operation on one or more inputs, producing a single output.

52 CHAPTER 4. SOFTWARE DEVELOPMENT

Case A B A XOR B
1 0 0 0
2 0 1 1
3 1 0 1
4 1 1 0

Table 4.1: Exclusive OR (XOR) Gate

Another XOR gate is used in line 48 to perform the acknowledgment. This XOR
gate functions as conditional inverter. The data input of a D flip-flop15 representing
the signal “hso” is connected to the output of the XOR gate while the output of the
flip-flop is connected to one of the two inputs of the gate. The other input is used as
inversion enabler in case (req and ack) is logical “1”. Let input “A” be the signal to
be inverted and input “B” the inversion enabler. When “B” is not set, that is case 1
and 3, the output is of the same value of “A”. But when “B” is set, that is case 2 and
4, the output is the inversion of “A”. Thus, setting the signal “ack” within a request,
that is (hso /= hsi), causes the signal “hso” to be inverted, following the previous
toggle of “hsi” done by the CPU.

To write to a channel, its vectors are connected to the entity “fsio_put” implementing
the slave write routine, shown in algorithm 4.8. It uses equal combinational logics of
XOR gates for request detections and acknowledgements. But instead of feeding “fsi”
back to “fso”, it compares them and delays the acknowledgment until they match.
Thus, in contrast to “fsio_get”, “ack” must be kept set until “req” is reset.

15 The D flip-flop captures the value of its input, becoming its output at the next clock cycle.

4.2. CPU/FPGA COMMUNICATION 53

Algorithm 4.8 Slave Write (SW) Routine

23 entity fsio_put is

24 generic (

25 cap: integer := CAP;

26 len: integer := LEN

27);

28 port (

29 clk: in std_logic;

30 hsi: in std_logic;

31 hso: out std_logic;

32 fsi: in std_logic_vector(cap - 1 downto 0);

33 fso: out std_logic_vector(cap - 1 downto 0);

34 dat: in std_logic_vector(len - 1 downto 0);

35 req: out std_logic;

36 ack: in std_logic

37);

38 end fsio_put;

39

40 architecture behavioral of fsio_put is

41 begin

42 fso(len - 1 downto 0) <= dat;

43 req <= hso xor hsi;

44 ctl: process(clk)

45 begin

46 if rising_edge(clk) then

47 if fso = fsi then

48 hso <= hso xor (req and ack);

49 end if;

50 end if;

51 end process ctl;

52 end behavioral;

4.2.5 File Transfer Application

The application fsiomakes use of the library libfsio to transfer files between CPU
and FPGA. As shown in figure 4.8, it accepts a channel description file as command
line argument labeled “FSIO” and transfers data either from the channel to a ”FILE”
or vice versa, whether “MODE” is “get” or “put”, respectively. Optionally, it can dump
transfer statistics like the transfer rate for performance measurements to a file la-
beled “DUMP”. The transfer rate, the total number of bytes already transferred, the

54 CHAPTER 4. SOFTWARE DEVELOPMENT

elapsed time, the progress in percentage, and the estimated time of arrival (ETA)
are calculated and displayed either every time the buffer will be emptied or at the
end of the transfer only. Latter for not distorting performance measurements due
to increased CPU usage for the calculations and terminal refreshing. In “get” mode,
the percentage and ETA is only displayed if the so-called end of file (EOF), required
for these calculations, is given by option -e, --eof. In “put” mode instead, the size
of “FILE” is used as default for “EOF” in case it is determinable, which is the case
for regular files. The buffer size can be fine-tuned in multiples of the channel width
by option -b, --buf. To cancel the current transfer, pressing CTRL+C safely termi-
nates the application in case it is not busy with polling. Otherwise, double-pressing
CTRL+C immediately but unsafely terminates the application. Unsafe, in the sense
of possibly leaving the FPGA in an uncompleted handshake and not cleaning up all
resources of the application resulting in memory leaks.

Figure 4.8: Usage of File Transfer Application

For quick a generation of test files, especially on embedded devices, another appli-
cation named fsio-tvgen has been written. As shown in figure 4.9, it accepts three
command line arguments labeled “ROWS”, “COLS”, and “SIZE”. With these it is
possible to generate a binary file of incremental “SIZE”-byte sized integer values.
All integers of a column have the value of its row number. In this way, they can be

4.2. CPU/FPGA COMMUNICATION 55

aligned to the channel width by choosing “COLS” appropriately to facilitate debug-
ging by distinguishing dumped values of different channels. With “COLS” of 1, no
values are repeated. The argument “ROWS” adjusts the final file size.

Figure 4.9: Usage of Test Vector Generator

A test vector, aligned to a channel of width 4 · 4 B = 16 B, would be of four columns
of 4-byte sized integers. With one million rows, its final size sums up to 16 MB. A
hexadecimal dump of the first sixteen rows of this vector is shown in figure 4.10. The
left column is the byte offset of a row. The other four columns are the 4-byte sized
integer values represented by eight hexadecimals. They are incremented each row,
starting with zero.

56 CHAPTER 4. SOFTWARE DEVELOPMENT

Figure 4.10: Example Test Vector

4.3 Clock Generation

Clock generation is done by a highly-flexible quad clock generator from Silicon Labs
called Si5338 [50, 51, 52], entirely configurable through an I2C interface. It is capa-
ble of locking to an external input clock for generating up to four synchronous output
clocks of user-programmable frequencies. This enables generation of independent
clocks for the MGT receivers connected to the ECAL and HCAL through the optical
plant, the MGT transmitters connected to the L1Topo, the MGT transmitters inter-
facing the ROD daughter module, and for a pass-through of the global input clock
to which all these outputs are synchronous.

At power-up the device copies its entire configuration from a built-in non-volatile
memory (NVM) into its random-access memory (RAM). The NVM is an one-time
programmable memory (OTP) serving as an user-definable default configuration
storage. Once programmed by a so-called field programmer, it can never be re-
programmed again. After power-up the device is still configurable by manipulating
registers of the RAM via the I2C interface. Silicon Labs provides a software tool
with a graphical user interface (GUI) called ClockBuilder Desktop Software [53]

4.3. CLOCK GENERATION 57

to simplify the device configuration. It is capable of connecting and writing device
configurations to the Si5338 evaluation board [54]. This board from Silicon Labs
provides connectivity for all input and output clock signals in order to test several
features. Alternatively, the entire configuration can be stored in either a register
map file or a C16 code header file. While former is used by the tool itself and further
distinguished to either just load a previously saved device configuration or to pro-
gram the NVMwith the field programmer [55] from Silicon Labs. Latter is intended
for inclusion in an own C application.

For automated control of clock generation at run time of the jFEX, the software
package si53xx has been developed. The name was chosen to emphasize potential
compatibility to similar devices like the Si5356 [56] from Silicon Labs. This pack-
age consists of three tools, si53xx-map for converting register maps, si53xx-cmp for
generating transition maps, and si53xx for actually controlling the device.

4.3.1 Register Map Creation

The ClockBuilder Desktop Software fromSilicon Labs is divided into six tabs labeled
“Frequency Plan”, “Output Drivers”, “Power”, “Inc and Dec”, “Spread Spectrum”,
and “Status”. The first tab is used to define the input clock source and how out-
put clocks are derived from it. The customizations done on this tab for the default
operation of the jFEX are shown in figure 4.11. It expects the global input clock
of 40.0787 MHz on pins “IN1” and “IN2” and generates four output clocks labeled
“CLK0”, “CLK1”, “CLK2”, and “CLK3” of 280.5509 MHz, 160.3148 MHz, 240.4722 MHz,
and 40.0787 MHz by assigning integral multipliers of 7, 4, 6, and 1, respectively. The
first three clocks are used by the processor FPGAs as MGT reference clocks to gener-
ate the final transfer rate clocks of 11.2 GHz, 12.8 GHz, and 9.6 GHz with multipliers
of 40, 80, and 40, respectively.

16 C [57] is a general-purpose programming language.

58 CHAPTER 4. SOFTWARE DEVELOPMENT

Figure 4.11: Frequency Plan [53]

As shown in figure 4.12, the output drivers can be configured as well. For the MGT
reference clocks, the current mode logic (CML) at 2.5 V was chosen as output type.
CML is a differential digital logic family widely used in high-speed systems like
serial data transceivers or frequency synthesizers. The pass-through of the global
clock is distributed by low-voltage differential signaling (LVDS) at 2.5 V.

4.3. CLOCK GENERATION 59

Figure 4.12: Output Drivers [53]

The Si5338 device can be powered and interfaced at different voltages, see figure 4.13.
The jFEX supplies it with 2.5 V but the mezzanine card interfaces it at 3.3 V.

60 CHAPTER 4. SOFTWARE DEVELOPMENT

Figure 4.13: Power [53]

The “Inc and Dec” tab in figure 4.14 enables independent configuration of an initial
phase offset and phase walks for each clock output. These features are not used by
the default configuration of the jFEX.

4.3. CLOCK GENERATION 61

Figure 4.14: Inc and Dec [53]

In order to reduce electromagnetic interference (EMI) caused by higher-order har-
monics of clock signals, a spread spectrum clock can be generated by dithering its
frequency between defined margins, as shown in figure 4.15. Further parameters
like modulation rate or spread profile can be tuned as well by analyzing possible
EMI of the final hardware. Thus, the default configuration of the jFEX keeps this
feature disabled.

62 CHAPTER 4. SOFTWARE DEVELOPMENT

Figure 4.15: Spread Spectrum [53]

The last tab, shown in figure 4.16, displays the device status made up of four flags.
The flags “LOS_CLKIN” and “LOS_FDBK” indicate loss of signal (LOS) of the in-
put clock (CLKIN) and of the feedback (FDBK), respectively. The flag “PLL_LOL”
indicates loss of lock (LOL) of the PLL17 and the flag “SYS_CAL” indicates that the
system (SYS) is calibrating (CAL), that is the PLL is in the process of acquiring its
lock. In addition, these signals can trigger an interrupt on a dedicated pin of the de-
vice. In case a certain status flag is expected to indicate an error, like “LOS_FDBK”
if the feedback is not used at all, it can safely be ignored by selecting it in the inter-
rupt mask. To not miss an error in case it resolved itself, the sticky status is only
set automatically but must be reset manually by clicking the corresponding signal
in the GUI.

17 A phase-locked loop (PLL) controls the phase of an output signal related to an input signal.

4.3. CLOCK GENERATION 63

Figure 4.16: Status [53]

Finally, after configuration is done, it can be saved by clicking the menu entry “Op-
tions” followed by “Save register map file (not for factory programming)...”, as shown
in figure 4.17. In this way a previously saved configuration can be restored by click-
ing “Open register map file...”. To create a register map file for programming the
NVM, “Save registers for factory programming...” is chosen instead. This will addi-
tionally offer a wizard to request a custom part number for ordering preconfigured
devices. For inclusion in an own C application, “Save C Code Header File...” is used.

64 CHAPTER 4. SOFTWARE DEVELOPMENT

Figure 4.17: Options [53]

4.3.2 Register Map Conversion

The C code header file is meant to be included in an own C code application. This is
useful for static configurations only, since updating the configuration would require
recompiling the application. Another approach is to write an application capable of
parsing a configuration file at run time. To keep the source code for parsing a con-
figuration file simple and independent from the current format, a conversion script
named si53xx-map has been written. The C code header file stores the information,
necessary to write a single register, in a C structure of three integer values of one
byte each, as shown from line 84 to 88 of algorithm 4.9. Starting from line 90, an
array is defined storing the information of all the 350 registers of a certain config-
uration. For each register, its address in RAM, its actual value, and an 8-bit mask
is specified from left to right in the order mentioned. While the address is given
in decimals ranging from 0 to 255, the other two entries are given in hexadecimals
ranging from 0x00 to 0xFF. Since the smallest transferable unit of the I2C bus is a
byte made up of 8 bits, a mask is required to mark the bits actually intended to be

4.3. CLOCK GENERATION 65

written and to ignore the others. To access a register above the 1-byte sized integer
range from 0 to 255, the page register at address 255 must be set to 0x01, causing
the device to internally add an offset of 255 to the register addresses of subsequent
I2C commands. To access again lower addressed registers, the page register must
be reset to 0x00.

Algorithm 4.9 Part of C Code Header File

82 #define NUM_REGS_MAX 350

83

84 typedef struct Reg_Data{

85 unsigned char Reg_Addr;

86 unsigned char Reg_Val;

87 unsigned char Reg_Mask;

88 } Reg_Data;

89

90 Reg_Data const code Reg_Store[NUM_REGS_MAX] = {

91 { 0,0x01,0x00},

92 { 1,0x00,0x00},

93 { 2,0x26,0x00},

94 { 3,0x70,0x00},

95 { 4,0x00,0x00},

96 { 5,0x00,0x00},

97 { 6,0x08,0x1D},

98 { 7,0x20,0x00},

99 { 8,0x10,0x00},

100 { 9,0xD0,0x00},

101 { 10,0x0C,0x00},

In contrast, the converted register map file stores the three entries of a register in a
line of white space separated hexadecimals, as shown in algorithm 4.10. The order
is unchanged but the address entry is given in hexadecimals, too. Having all en-
tries simply white space separated makes further parsing almost trivial. But more
important, having a strict format makes register maps reproducibly comparable by
common tools like diff, as used in section 4.3.3. Additionally, all lines with a mask
of 0x00 are dropped since writing no bits of a byte at all has no effect anyway.

66 CHAPTER 4. SOFTWARE DEVELOPMENT

Algorithm 4.10 Part of Converted Register Map File

1 06 08 1d

2 1b 70 80

3 1c 03 ff

4 1d 41 ff

5 1e b0 ff

6 1f c0 ff

7 20 c0 ff

8 21 c0 ff

9 22 c0 ff

10 23 55 ff

The script accepts multiple header files as arguments and converts them effectively
in-place, renaming their file extensions from “.h” to “.map”, as shown in figure 4.18.

Figure 4.18: Usage of Register Map Converter

The basic steps performed to do the conversion are shown in algorithm 4.11. From
line 33 to 37 four functions are defined. First two process file names while last
two process file contents. hdr_file() filters file names by their extension, passing

4.3. CLOCK GENERATION 67

only those ending with “.h”. map_file() replaces the extension of a file name from
“.h” to “.map”. hdr_data() extracts the register entries of a C code header file line
by line. It invokes a stream editor (sed) [58], capable of evaluating so-called reg-
ular expressions18, with four semicolon separated commands. The first command,
’/{[^}]\+}/!d’, deletes all lines not enclosed by the curly braces “{” and “}”. The
second command, ’s/.*{\([^}]\+\)}.*/\1/’, extracts the three comma separated
entries within these curly braces. The third command, ’s/,/ /g’, replaces each
comma with a white space. And the fourth command, ’/00 *$/d’, deletes all lines
with a mask of 0x00. This is almost the desired result, all three entries of a line
are white space separated. But some entries like the register addresses are in-
dented by additional white spaces to align them to the right, which is common for
columns of decimals to improve readability. These additional white spaces are re-
moved by the last of the four functions, map_data(), which also formats all entries
as lowercase hexadecimals without the 0x prefix. Now, having the core functionality
implemented, it can be applied to each file by looping over their file names, given
as command line arguments, starting from line 39 of algorithm 4.11. If a file name
ends with “.h”, checked in line 40, its content is extracted, reformatted and saved to
a new “.map” file by line 41 and 42, respectively. Finally, the old “.h” file is deleted
by line 43.

Algorithm 4.11 Part of Register Map Converter Script

33 hdr_file() { echo "$1" | grep -qG ’\.h$’; }

34 map_file() { echo "$1" | sed ’s/\.h$/.map/’; }

35

36 hdr_data() { sed ’/{[^}]\+}/!d;s/.*{\([^}]\+\)}.*/\1/;s/,/ /g;/00 *$/d’ "$1"; }

37 map_data() { echo "$1" | xargs -r printf ’%02x %02x %02x\n’; }

38

39 for hdr_file; do

40 if hdr_file "$hdr_file"; then

41 hdr_data=$(hdr_data "$hdr_file") || exit 64

42 map_data "$hdr_data" > "$(map_file "$hdr_file")" || exit 65

43 rm "$hdr_file" || exit 66;

44 fi

45 done

18 A regular expression is a sequence of characters defining a search pattern.

68 CHAPTER 4. SOFTWARE DEVELOPMENT

4.3.3 Transition Map Generation

The converted register maps of previous section 4.3.2 contain an entire device config-
uration. This means, for every single change of the configuration to be made at run
time, an entire new register map must by saved and written to the device. This has
several drawbacks. In addition to the changed registers, all the unchanged regis-
ters are written as well, unnecessarily increasing the time of blocking a whole chain
of I2C slave devices. Multiple register maps would differ only slightly for a certain
feature configured differently. But changing a common feature of them, would re-
quire to recreate all the different register maps each time. To avoid this, another
script named si53xx-cmp has been written for further processing of converted reg-
ister maps. This script expects a register map as command line argument labeled
“OLD” and one or more additional register maps as command line arguments la-
beled “NEW...”, as shown in figure 4.19.

Figure 4.19: Usage of Transition Map Generator

It compares each “NEW”map with the one “OLD” map and generates corresponding
positive “.pos” and negative “.neg” transition map files with the base name of “NEW”
containing only the subset of registers necessary to get from the one “OLD” configu-
ration to a certain “NEW” configuration or to revoke it, respectively. An example is

4.3. CLOCK GENERATION 69

given in figure 4.20, where “default.map” is labeled “OLD” while “zero-delay.map”
and “clk0@160.map” are labeled “NEW...”. When comparing the file sizes in the fifth
column from left of the resulting transition map pairs, 36 B and 99 B, with the file
sizes of their original register maps, both of 2133 B, file size reductions by factors of
59.25 and 22.54 for the features “zero-delay” and “clk0@160” are observed, respec-
tively. As expected, this drastically reduces the number of registers necessary to be
written.

Figure 4.20: Example Transition Maps

In this way, the feature or change of parameters itself, not the entire new configu-
ration, is represented by its own pair of “.pos” and “.neg” files, former for applying
and latter for revoking it, as visualized in figure 4.21.

70 CHAPTER 4. SOFTWARE DEVELOPMENT

Figure 4.21: Transition Map Pair

Since a read-modify-write procedure against a mask for each register to be written
is performed just in case its mask is not 0xFF [52], several “.pos” or “.neg” files might
share common registers with different values without interference, as long as the
features they describe are bitwise orthogonal. In contrast, overlapping features sim-
plymust be revoked by invoking their “.neg” file before invoking the other’s “.pos” file.
Effectively, this script automates identifying and managing registers of all possible
features by representing them as transition map files without studying all the 350
registers described in the reference manual [51] of the device and without manually
implementing a single feature at all.

As shown in algorithm 4.13, the script firstly defines eight functions from line 35 to
46. map_file() filters file names by their file extension, passing only those ending
with “.map” while pos_file() and neg_file() replace them from “.map” to “.pos”
and “.neg”, respectively. The last five functions operate on file contents. Since regis-
ter addresses are spread over two pages as explained in section 4.3.2, the page must
be selected appropriately before its registers can be accessed. As shown in algorithm
4.12, register maps require page 0x00 to be already selected, then they always select

4.3. CLOCK GENERATION 71

page 0x01 even if they do not contain a register of that page, and finally they select
page 0x00 again to meet the requirement of a possible subsequent register map.

Algorithm 4.12 Register Pages

1 06 08 1d

2 1b 70 80

3

4 d9 00 ff

5 f2 00 02

6 ff 01 ff # Select page 01.

7 1f 00 ff

8 20 00 ff

9

10 5a 00 ff

11 5b 00 0f

12 ff 00 ff # Select page 00.

Since all register maps always have these two lines selecting a page, they would be
dropped when extracting changes only. Thus, when reading the one register map
labeled “OLD” by the function old_data(), these two lines are explicitly dropped
by deleting lines beginning with the page register address of 0xFF, resulting in a
forced change when compared with each of the register maps labeled “NEW...”, done
by the function new_data(). This function actually invokes the common tool diff
[36]. It accepts two files as command line arguments and compares them line by
line. It reports all non-matching lines along with their line numbers. Lines being
present in the right but not in the left file are preceded by a right arrow ’> ’ while
lines being present in the left but not in the right file are preceded by a left arrow
’< ’. The last two functions, pos_data() and neg_data(), filter these two kinds of
lines, respectively. Here, to filter means to pass matches while to filter out means
to drop matches. Additionally, neg_data() passes lines of the opposite kind if be-
ginning with ’ff’. After filtering, both functions remove the prefix of each line. In
case no registers of page 0x01 are written at all, the two lines selecting the pages
are needless and can be deleted since they enclose no other lines. This is done by
the function clr_page() passing the command ’/^ff/{N;/\nff/d}’ to the already
mentioned tool sed looking for lines beginning with ’ff’. On match, the semicolon
separated subcommands enclosed in curly braces, ’N’ and ’/\nff/d’, are invoked.
Former appends the next line to the pattern space allowing the latter subcommand
to operate on both lines. This is necessary since by default, sed operates on single

72 CHAPTER 4. SOFTWARE DEVELOPMENT

lines only. Latter subcommand looks for a sequence of a newline character ’\n’ fol-
lowed by ’ff’. On match, these two lines are deleted. After having comparison and
filtering implemented, it can be applied to each register map given as command line
arguments. From line 48 to 53 of algorithm 4.13, the one registermap labeled “OLD”
is processed. From line 55 to 62 the additional register maps labeled “NEW...” are
processed by looping over their file names. Line 57 filters out file names not ending
with “.map” and ensures to not list the one “OLD” file additionally as a “NEW” file
when using the wild card character “*” as “NEW...” label, selecting all files of a di-
rectory. Line 58 does the actual comparison followed by the positive and negative
filtering in line 59 and 60, whose results are redirected to the corresponding “.pos”
and “.neg” files, respectively.

Algorithm 4.13 Part of Transition Map Generator Script

35 map_file() { echo "$1" | grep -qG ’\.map$’; }

36

37 pos_file() { echo "$1" | sed ’s/\.map$/.pos/’; }

38 neg_file() { echo "$1" | sed ’s/\.map$/.neg/’; }

39

40 old_data() { sed ’/^ff/d’ "$1"; }

41 new_data() { echo "$1" | diff - "$2"; test $? -ne 2; }

42

43 clr_page() { sed ’/^ff/{N;/\nff/d}’; }

44

45 pos_data() { echo "$1" | sed ’/^>/!d;s/^> //’ | clr_page; }

46 neg_data() { echo "$1" | sed ’/^\(<\|> ff\)/!d;s/^. //’ | clr_page; }

47

48 old_file=$1

49 map_file "$old_file" || {

50 >&2 echo ’OLD is not a .map file’

51 exit 64

52 }

53 old_data=$(old_data "$old_file") || exit 65

54

55 shift

56 for new_file; do

57 if map_file "$new_file" && test "$old_file" != "$new_file"; then

58 new_data=$(new_data "$old_data" "$new_file") || exit 66

59 pos_data "$new_data" > "$(pos_file "$new_file")" || exit 67

60 neg_data "$new_data" > "$(neg_file "$new_file")" || exit 68

61 fi

62 done

4.3. CLOCK GENERATION 73

4.3.4 Device Control

To finally control the device, the C++ application si53xx has been written. While the
user interface, shown in figure 4.22, is implemented in this binary, the file parsing
and communication routines are implemented in the library libsi53xx.

Figure 4.22: Usage of Clock Generator Controller

This application accepts multiple register map and transition map files as command
line arguments labeled “[MAP|POS|NEG]...” and applies them one after another
in given order. The square brackets indicate that specifying these files are optional
since some basic built-in routines like reading the part number or status register of
a device are implemented as well, specifiable by the “[OPTION]...” label.

The library abstracts away specifics of different I2C hardware interfaces by defining
an intermediate but abstract C++ interface of two pure virtual functions19 mak-
ing different hardware interfaces interchangeable, as shown in line 44 and 45 of

19 A pure virtual function requires a derived class to provide an implementation.

74 CHAPTER 4. SOFTWARE DEVELOPMENT

algorithm 4.14. In this way, the application can transparently be used with var-
ious internal or external I2C hardware by just implementing the abstract inter-
face for each concrete hardware interface on demand. These two functions, void
get(byte addr, byte* data, byte size) and void set(byte addr, const byte*
data, byte size), both accept a register address as first, an array of register val-
ues as second, and the number of these register values as third argument.

Algorithm 4.14 Hardware Abstraction

22 class si53xx {

23 public:

24 typedef unsigned char byte;

25 static const byte

26 PIN0 = 0x70,

27 PIN1 = PIN0 + 1;

28 static const byte

29 SYS_CAL = 1 << 0,

30 LOS_CLKIN = 1 << 2,

31 LOS_FDBK = 1 << 3,

32 PLL_LOL = 1 << 4;

33 bool set_register_map(std::string file);

34 std::string get_part_number();

35 bool get_interrupt();

36 bool get_sticky_interrupt();

37 byte get_interrupt_mask();

38 void set_interrupt_mask(byte data, byte mask = 0xFF);

39 byte get_status();

40 byte get_sticky_status();

41 void set_sticky_status(byte data, byte mask = 0xFF);

42 virtual ~si53xx() {};

43 protected:

44 virtual void get(byte addr, byte* data, byte size) = 0;

45 virtual void set(byte addr, const byte* data, byte size) = 0;

46 private:

47 byte rx(byte addr) { byte data; get(addr, &data, 1); return data; }

48 void tx(byte addr, byte data) { set(addr, &data, 1); }

49 void xx(byte addr, byte data, byte mask);

50 void pg(byte page) { tx(255, page & 0x01); }

51 };

For single byte mode, that is reading or writing only a single register, two helper
functions, byte rx(byte addr) and void tx(byte addr, byte data), are defined

4.3. CLOCK GENERATION 75

in line 47 and 48 allowing a single register value to be returned and a single register
value instead of an array of register values to be given as argument, respectively.
A third helper function in line 50, void pg(byte page), implements the already
mentioned register page selection. These functions simplify code and increase its
readability without sacrificing performance since they are not only declared but also
defined in the C++ header file of the library allowing the compiler to optimize them
away by substituting their definition in-line at their point of call [47]. In contrast,
a fourth helper function, void xx(byte addr, byte data, byte mask), is declared
in line 49 of the C++ header file but defined in the C++ source file of the library due
to its bigger code size, as shown in algorithm 4.15.

Algorithm 4.15 Read-Modify-Write Routine

23 void si53xx::xx(byte addr, byte data, byte mask) {

24 if (mask == 0xFF)

25 tx(addr, data);

26 else

27 if (mask != 0x00)

28 tx(addr, (rx(addr) & ~mask) | (data & mask));

29 }

This function makes use of the two single byte mode functions implementing the
already motivated read-modify-write procedure by expecting an additional third ar-
gument for the register mask specifying the eight bits of an 1-byte sized register
value intended to be written while ignoring the others. To ignore, actually means,
to not change those bits. But since a whole byte must be written being the smallest
transferable unit of the I2C bus, the old register value must be read firstly, then the
bits intended to be written are modified, becoming the new register value finally
being written to the device, hence read-modify-write. There are two special cases, a
register mask of 0xFF caught in line 24 and a register mask of 0x00 caught in line 27.
Former means to write all eight bits, which line 25 reduces to a pure single write.
Latter means to write no bits at all, which results in a skip of line 28 actually be-
ing the read-modify-write function. This line firstly reads the old register value rx(
addr) and masks on the bits to be ignored with a binary “and” against the inverse
register mask, (rx(addr) & ~mask). Then it masks on the bits to be written of the
new register value with a binary “and” against the proper register mask, (data &
mask). Now, a binary “or” safely merges the old bits to be ignored with the new bits
to be written, (rx(addr) & ~mask) | (data & mask). Finally, the modified register
value is passed to the single write mode function.

76 CHAPTER 4. SOFTWARE DEVELOPMENT

Among single byte modes, burst modes can be performed as well by passing an array
of multiple register values to the two hardware abstraction functions. Burst modes
require a continuous register sequence, that is having incremental addresses. Burst
writes additionally require register masks of 0xFF, otherwise read-modify-writes are
performed. For a continuous sequence it is not necessary to prepend the register
address to each register value. Instead, only the address of the first register of the
sequence is required since the device is capable of internally auto-incrementing ad-
dresses for I2C transactions of multiple register values. This drastically reduces
the number of transactions, especially compared to single reads, being composed of
two transactions in order to switch the I2C mode from write to read, former writ-
ing the register address and latter reading the register value, both beginning with
the slave address of the device, as described in section 3.1.2. When this application
applies register maps, it detects continuous 0xFF masked register sequences and
writes them in burst mode.

Chapter 5

Tests & Results

In this chapter the mezzanine card designed in chapter 3 is tested with the software
packages developed in chapter 4. Which are the workflow kit Zed Tool (z2l), its
helper tool plug, the CPU/FPGA file transfer application fsio, and the controller
si53xx of the clock generator.

5.1 Booting the Operating System

With the help of the workflow kit of section §4.1, a Zed Tool project has been created
to test if the mezzanine card is capable of booting into a terminal login prompt. This
project was kept simple, having no user application software and an almost empty
FPGA implementation, only connecting the eight switches of the mezzanine card
to its eight LEDs. The boot process is monitored via an UART over USB terminal
connection. The PicoZed exposes a signal labeled “DONE”, indicating the FPGAwas
successfully programmed. This signal is visualized by the mezzanine card with the
left LED of the pair of blue lightning LEDs in figure 5.1.

77

78 CHAPTER 5. TESTS & RESULTS

Figure 5.1: Booting the Mezzanine Card

The initial try to boot the mezzanine card successfully programmed the FPGA, the
“DONE” LED was lightning and the array of eight LEDs correctly represented the
eight switches on the left in figure 5.1. But no output of the boot process was printed
on the terminal screen. Instead, the terminal connection has not been established
by the USB-to-UART bridge of section 3.1.3 at all. Assuming the schematics of the
mezzanine card to interface this chip are correct, bad solder connections might be
the problem. Thus, this chip has manually been soldered again and the boot process
was repeated. In fact, it solved the problem and the terminal connection was estab-
lished. But there was still no output on the screen and surprisingly, the “DONE”
LED was no more lightning. By default, the U-Boot allows the user to abort the
boot process by pressing a key in the first four seconds. Now, having a connection
established, it might be that a character is unintentionally sent to the terminal by
a faulty connection. To confirm or disprove this, the UART module of the Zynq was
disconnected from the USB-to-UART bridge by removing two 0Ω resistor jumpers
labeled “R149” and “R150” of its two wires, as shown in figure 5.2. Instead, it was
connected to the RS-232 level translator by adding two 0Ω resistor jumpers labeled
“R114” and “R116”.

5.1. BOOTING THE OPERATING SYSTEM 79

Figure 5.2: UART over USB – UART over RS-232

This did not affect the boot process, the FPGA was still no more programmed and no
output on the UART over RS-232 terminal connection was seen. Another try was to
completely disconnect the UART module of the Zynq by removing all jumpers, but
again, it had no effect. Thus, it was not an unintentionally sent character aborting
the boot process and these modifications have been undone to connect the USB-
to-UART bridge again. The only modification done to the mezzanine card, after
initially successfully programming the FPGA, was manually soldering the USB-to-
UART bridge. Thus, it might be that this caused some mechanical stress to the
mezzanine card possibly breaking some further badly soldered connections of other
chips involved in the booting process like the SDIO port expander. Hence, another
try has been made by power cycling the mezzanine card while pushing a finger onto
the SDIO port expander chip to give some pressure on its pins. In fact, this solved
the problem. The FPGA was successfully programmed again and output was finally
printed on the screen. To allow the mezzanine card to boot without pushing a finger
onto it, the SDIO port expander has been manually soldered again, as shown in
figure 5.3. During cleaning the chip, its label was gone.

80 CHAPTER 5. TESTS & RESULTS

Figure 5.3: SDIO Port Expander [22]: Before & After

After having solved hardware related problems regarding the boot process, the out-
put on the screen was inspected. The goal is to boot into a terminal login prompt
after all the debugging information has been printed on the screen. But the boot pro-
cess stopped at some point without an error message giving a hint about the prob-
lem. From the output it could be concluded that the FSBL was passed, the U-Boot
loaded the kernel, and the kernel found and parsed the device tree while initializing
one hardware module after the other until the boot process reproducibly stopped at
the same point. The assumption was, that the device tree, being the last component,
might cause the kernel to hang due to an invalid configuration of a hardwaremodule.
A device tree is typically described by a single device tree source file of file exten-
sion “.dts” and one or more device tree source include files of file extension “.dtsi”,
latter being included by former. These source files are compiled to a single device
tree blob of file extension “.dtb”, finally being parsed by the kernel. The device tree
source include files are automatically generated by using the configurations of hard-
ware modules contained within block design files of the Vivado Design Suite. Such
a block design has been created and customized to describe the hardware modules
used by the mezzanine card. Following customizations regarding the default config-
uration of the PicoZed have been done. The second SDIO module labeled “sdhci1” of
the Zynq chip has been disabled since it is not used while the first one labeled “sd-

5.1. BOOTING THE OPERATING SYSTEM 81

hci0” was already enabled and is connected to the SDIO port expander. The two I2C
modules labeled “i2c0” and “i2c1” and the first UART module labeled “uart0” of the
Zynq chip have been enabled. By default, its second UART module labeled “uart1”
was already enabled and used for monitoring the boot process. Thus, it is expected
to find corresponding entries of these modules in the device tree source include files.
As shown in algorithm 5.1, these auto-generated files contain the required module
descriptions. By default, the baud rate of the UART modules is 115.2 kbit/s and the
frequency of the I2C modules is 400 kHz.

Algorithm 5.1 Hardware Module Descriptions

25 &i2c0 {

26 clock-frequency = <400000>;

27 status = "okay";

28 };

29 &i2c1 {

30 clock-frequency = <400000>;

31 status = "okay";

32 };

42 &sdhci0 {

43 status = "okay";

44 xlnx,has-cd = <0x1>;

45 xlnx,has-power = <0x0>;

46 xlnx,has-wp = <0x0>;

47 };

48 &uart0 {

49 current-speed = <115200>;

50 device_type = "serial";

51 port-number = <0>;

52 status = "okay";

53 };

54 &uart1 {

55 current-speed = <115200>;

56 device_type = "serial";

57 port-number = <1>;

58 status = "okay";

59 };

82 CHAPTER 5. TESTS & RESULTS

Additionally, the kernel must know to which UART module it should print the boot
messages. As shown in algorithm 5.2, this is defined by creating an alias “serial0”
and point it to the appropriate UART module, in this case “uart1”.

Algorithm 5.2 Hardware Module Assignments

13 aliases {

14 serial0 = &uart1;

15 ethernet0 = &gem0;

16 spi0 = &qspi;

17 };

But an alias entry for the additionally enabled UART module labeled “uart0” was
missing. Thus, it has been manually added to the single device tree source file of file
extension “.dts”, not to be confused with the “.dtsi” files which will be overwritten the
next time their auto-generation is triggered. This “.dts” file is shown in algorithm
5.3 and can be edited by invoking the Zed Tool target fw.edit.dts. The default I2C
frequencies of 400 kHz have been changed to 100 kHz as well, lowering the capacitive
requirements of the I2C chains.

Algorithm 5.3 Hardware Module Modifications

1 /dts-v1/;

2 /include/ "system-conf.dtsi"

3 / {

4 aliases {

5 serial1 = &uart0;

6 };

7 };

8 &i2c0 {

9 clock-frequency = <100000>;

10 };

11 &i2c1 {

12 clock-frequency = <100000>;

13 };

Having added this missing alias for the additionally enabled UART module solved
the problem of a stopping boot process, the mezzanine card was successfully booting
into a terminal login prompt. Thus, this modification has been saved to the PetaL-
inux source folder managed by Zed Tool by invoking its target fw.save.

5.2. TESTING THE CPU/FPGA COMMUNICATION 83

To speed up the boot process, the previously mentioned delay of four seconds can
be disabled by editing a C code header file of the U-Boot with the help of Zed Tool
by invoking its target fw.edit.ubl and redefining the C Preprocessor (CPP) con-
stant CONFIG_BOOTDELAY from value 4 to -2, interpreted as completely disabling the
possibility of aborting the boot process. In analogy to the device tree sources, this
header file is not auto-generated and thus will not be overwritten, but it includes
other auto-generated header files providing hardware information to the U-Boot.
Another optimization has been made to not only save time but to also prevent po-
tential IP address1 conflicts in case the final MAC address2 of the mezzanine card
will be determined at a later stage. By default, the U-Boot initializes the Ethernet
module with a MAC address fixed at compile time. This initialization triggers an
Ethernet procedure called auto-negotiation by which common transmission param-
eters like the speed mode are determined. This takes time and is of no use, since the
kernel is supposed to manage Ethernet connectivity. The U-Boot does not provide a
single CPP constant to disable this feature. Instead, a workaround is to tell the U-
Boot that this Ethernet module does not exist by revoking all CPP constants related
to this module, again with the help of the Zed Tool target fw.edit.ubl followed by
fw.save to save these modifications.

5.2 Testing the CPU/FPGA Communication

The feedback synchronized CPU/FPGA communication of section §4.2 is tested with
the mezzanine card of section §3.2. The Zynq chip of the PicoZed is of speed grade
-1. For this speed grade the product guide [43] of the AXI GPIO IP Core states
a maximum clock frequency of 180 MHz for the AXI GPIO core which is used in
this test. The embedded operating system PetaLinux 2015.4 was targeted by the
cross compiler arm-linux-gnueabi-gcc [59] of version 4.9.2 with optimization switch
-O3. Firstly, the data integrity of the proposed protocol has been tested. Then,
transfer rate measurements were performed. Besides a connected power supply,
an Ethernet connection to the CPU of the mezzanine card was used to control the
software via multiple remote terminals using the tool ssh [39]. The host name of the
mezzanine card is “jfex”, displayed on each terminal prompt. Additionally, an UART

1 An Internet Protocol (IP) address can be assigned in dependence of a MAC address.
2 A media access control (MAC) address is a unique identifier of a network interface.

84 CHAPTER 5. TESTS & RESULTS

over USB connection was used to monitor the reboot process in case the FPGA must
be reprogrammed due to modifications to the slave implementation of the protocol.
All this was done with the help of the workflow kit Zed Tool described in section §4.1.

5.2.1 Data Integrity Verification

This test uses two remote terminals. One for writing a test vector file to the FPGA
and another for reading it back. Afterwards, their checksums are compared. The
FPGA instantiates two channels of equal width, one for reading data and the other
for writing data back, as shown in algorithm 5.4. The signal names ending in “0” are
the ones of the writing channel. The read data is locally stored in the signal vector
“data”.

Algorithm 5.4 Two Channels as Echo Check

191 ctl: process(clk180)

192 begin

193 if rising_edge(clk180) then

194 if req0 then

195 if full and not ack0 then

196 dat0 <= data;

197 full <= ’0’;

198 ack0 <= ’1’;

199 end if;

200 else

201 ack0 <= ’0’;

202 end if;

203 ack1 <= ’0’;

204 if req1 then

205 if not full then

206 data <= dat1;

207 full <= ’1’;

208 ack1 <= ’1’;

209 end if;

210 end if;

211 end if;

212 end process ctl;

As shown in figure 5.4, a test vector of 20000000 ·1 ·4 B = 80 MB was generated. This
is roughly the maximum file size of a bit stream file for a processor FPGA used by
the jFEX. The channel description file is dumped on the screen. It consists of one

5.2. TESTING THE CPU/FPGA COMMUNICATION 85

handshake and four data maps of 4 B each. Finally, the file transfer application fsio
has been executed. It established the previously dumped communication channel
and requested the FPGA to write data. The expected file size to be read, that is the
size of the test vector, is given as command line argument option -e. The test vector
was read back to file “get.tv” while transfer statistics were stored to file “get.sv”.

Figure 5.4: Reading Back the Test Vector

The file transfer started as soon as the other terminal has executed the fsio applica-
tion for writing the generated test vector “20000000x1x4.tv”, as shown in figure 5.5.
For writing the file to the FPGA, a separate channel has been established. Its de-
scription file is dumped on the screen. It is of equal width and uses differentmapping
addresses. After roughly 31 s the transfer has finished with an averaged transfer
rate of roughly 2.6 MB/s. For more precise values, the statistic vectors “get.sv” and
“put.sv” are meant to be inspected. The final command “sha1sum” calculated the
checksums of the written file “20000000x1x4.tv” and the read file “get.tv”. Both files
had identical checksums indicating a successful file transfer of no data corruption.

86 CHAPTER 5. TESTS & RESULTS

Figure 5.5: Writing the Test Vector

After the first successful test, it has been automated by a script. This script re-
peatedly executed file transfers and compared written with read back files. It only
stops when the checksums mismatch. After roughly two days and 460.8 GB trans-
ferred in total, this script has been aborted manually. No single data corruption was
observed.

5.2.2 Write Rate Measuring

Previous tests already gave a hint of several MB/s for the magnitude of transfer
rates. But the CPU was busy with transferring data in both directions instead of
measuring only one transfer at a time. Now, the assumption of section 4.2.2 that
more data maps per handshake map might increase the throughput rate until satu-
ration was precisely measured by making use of the statistic vectors the fsio appli-
cation is capable to generate. The first ten rows of such a statistic vector are dumped
in figure 5.6. Each row contains the transfer rate in B/s averaged over the time span
the application buffer is being filled. When full, it is emptied and the averaged trans-
fer rate is written to the next row. The default buffer size was used, that is 16384
times a channel width. For more statistics, a bigger test vector of 4 ·80 MB = 320 MB

5.2. TESTING THE CPU/FPGA COMMUNICATION 87

was generated. That is roughly the sum of bit stream sizes for all four processor FP-
GAs. Since the operating system mounts its root file system in RAM, it is ensured
that a possible slower read rate of the SD card cannot distort the measurement. For
the same reason transfer statistics were only displayed at the end of the file transfer
by the option -s to not waste CPU cycles.

Figure 5.6: Write Rate Measuring

To test various channel widths, 32 different channel description files from width of
1 · 4 B = 4 B to 32 · 4 B = 128 have been created with the largest one of 32 data maps.
The test vector of 320 MB was written to each of these differently sized channels.
The data read by the FPGA was discarded. The mean values of the transfer rates
of the statistic vectors along with their standard deviations as uncertainties have
been calculated and are listed in table 5.1.

88 CHAPTER 5. TESTS & RESULTS

Maps Channel Width (B) Rate (MB/s) Rate Uncertainty (MB/s)
1 4 4.540 0.006
2 8 6.288 0.016
3 12 7.231 0.008
4 16 7.798 0.015
5 20 8.095 0.038
6 24 8.452 0.009
7 28 8.672 0.010
8 32 8.827 0.010
9 36 8.986 0.016
10 40 9.095 0.013
11 44 9.135 0.012
12 48 9.203 0.015
13 52 9.314 0.013
14 56 9.386 0.013
15 60 9.452 0.013
16 64 9.472 0.014
17 68 9.461 0.015
18 72 9.480 0.015
19 76 9.555 0.018
20 80 9.594 0.019
21 84 9.630 0.017
22 88 9.652 0.017
23 92 9.679 0.017
24 96 9.687 0.018
25 100 9.717 0.018
26 104 9.733 0.018
27 108 9.737 0.019
28 112 9.734 0.019
29 116 9.735 0.019
30 120 9.734 0.020
31 124 9.736 0.020
32 128 9.733 0.021

Table 5.1: Write Rate vs. Channel Width

From a map count of 1 to 8 the write rate is almost doubled with a factor of

(8.827± 0.010) MB/s

(4.540± 0.006) MB/s
= 1.944± 0.004

but from a map count of 8 to 32 the increase goes into saturation with a factor of

5.2. TESTING THE CPU/FPGA COMMUNICATION 89

(9.733± 0.021) MB/s

(8.827± 0.010) MB/s
= 1.103± 0.003

as visualized in figure 5.7 showing the the transfer rate in MB/s against the channel
width in B confirming the assumption that more data maps per handshake map
might increase the throughput rate until saturation.

Figure 5.7: Write Rate vs. Channel Width

The maximum factor of increase relative to 1 data map of

(9.737± 0.019) MB/s

(4.540± 0.006) MB/s
= 2.145± 0.006

is observed with 27 data maps.

These results can be considered a success regarding the rough requirement of pro-
gramming the processor FPGAs in a reasonable amount of time. When instantiating

90 CHAPTER 5. TESTS & RESULTS

a channel of 4 or 8 data maps, all four bit streams can be transferred in less than
a minute, (41.04 ± 0.08) s or (36.25 ± 0.05) s, respectively. The write rate will not be
slowed down when choosing an appropriate SD card since the SDIO port expander
and the Zynq support both bus speeds [22, 60], Normal Speed of up to 12.5 MB/s and
High Speed of up to 25 MB/s [61], exceeding the maximum write rate from CPU to
FPGA of (9.737±0.019) MB/s with 27 data maps. The FPGA of the Zynq will forward
one bit stream after the other to the corresponding processor FPGA of the jFEX over
one of its seven so-called configuration interfaces in order to program it [10]. One
interface is called Slave SelectMAP and can operate at a clock rate of up to 125 MHz

[62], resulting in a transfer rate of up to 125 MB/s when choosing a bus width of
8 bits. Since both the transfer rate of reading from an appropriate SD card and the
transfer rate of writing to the processor FPGAs exceed the maximum write rate
from CPU to FPGA, the amount of time required to program the processor FPGAs
depends on the number of data maps only.

5.2.3 Read Rate Measuring

In contrast to the write rate measuring of section 5.2.2, it is not enough to have 32
different channel description files usedwith actual only one channel of themaximum
width of 32 data maps, since when reading from the FPGA, it would always compare
the fed back data of all maps but the number of maps being feed back by the CPU
varies due to different description files. Instead of regenerating the bit stream for
the FPGA for each channel width, an additional channel of one data map of size
1 · 4 B = 32 bit was instantiated. Each of its 32 signals is used to dynamically enable
comparison for each of the 32 maps at run time. Thus, before a read measuring
started, the channel width has been configured appropriately by writing a 4 B sized
binary file named “width” appended by the number of maps, as shown in figure 5.8.

5.2. TESTING THE CPU/FPGA COMMUNICATION 91

Figure 5.8: Read Rate Measuring

A test vector of 320 MB was generated by the FPGA on the fly. It was read from
each of these differently sized channels and written to the file system mounted in
RAM. The mean values of the transfer rates of the statistic vectors along with their
standard deviations as uncertainties have been calculated and are listed in table 5.2.

92 CHAPTER 5. TESTS & RESULTS

Maps Channel Width (B) Rate (MB/s) Rate Uncertainty (MB/s)
1 4 0.855 0.057
2 8 1.567 0.091
3 12 2.184 0.114
4 16 2.722 0.123
5 20 3.191 0.131
6 24 3.605 0.130
7 28 3.979 0.126
8 32 4.337 0.118
9 36 4.611 0.110
10 40 4.894 0.102
11 44 5.052 0.086
12 48 5.319 0.077
13 52 5.507 0.063
14 56 5.676 0.058
15 60 5.862 0.042
16 64 6.049 0.030
17 68 6.167 0.020
18 72 6.276 0.009
19 76 6.405 0.008
20 80 6.534 0.015
21 84 6.626 0.022
22 88 6.738 0.026
23 92 6.848 0.030
24 96 6.958 0.031
25 100 7.017 0.031
26 104 7.092 0.032
27 108 7.195 0.030
28 112 7.266 0.027
29 116 7.335 0.027
30 120 7.385 0.025
31 124 7.438 0.025
32 128 7.545 0.021

Table 5.2: Read Rate vs. Channel Width

From a map count of 1 to 12 the read rate is roughly sextupled with a factor of

(5.319± 0.077) MB/s

(0.855± 0.057) MB/s
= 6.221± 0.425

but from a map count of 12 to 32 the increase goes into saturation with a factor of

5.2. TESTING THE CPU/FPGA COMMUNICATION 93

(7.545± 0.021) MB/s

(5.319± 0.077) MB/s
= 1.418± 0.021

as visualized in figure 5.9 showing the the transfer rate in MB/s against the channel
width in B confirming the assumption that more data maps per handshake map
might increase the throughput rate until saturation.

Figure 5.9: Read Rate vs. Channel Width

The maximum factor of increase relative to 1 data map of

(7.545± 0.021) MB/s

(0.855± 0.057) MB/s
= 8.825± 0.589

is observed with 32 data maps.

Though this maximum factor of increase compared with the one of the write rate of
2.145±0.006 is by factor 4.116±0.275 higher, the read rates are overall lower then the

94 CHAPTER 5. TESTS & RESULTS

write rates. This might be due to the fact that the CPU feeds data back to the FPGA
alternately with the handshake polling instead of continuously like the FPGA does,
resulting in a higher delay per handshake reducing the effective throughput rate.

5.3 Testing the I2C Communication

While the mezzanine card of section §3.2 was being produced, I2C communication
as described in section 3.1.2 was firstly tested with different hardware. This test
confirms functionality of an I2C master module by connecting it to an I2C slave de-
vice of testing purpose only. In this way, a possible erroneous I2C transaction cannot
damage a slave device like the clock generator of section §4.3 by accidentally writ-
ing faulty data to wrong registers. As I2C master module, an USB to serial/parallel
break-out module called UM232H-B [63] from Future Technology Devices Interna-
tional Ltd. (FTDI) was chosen. Besides other communication standards it supports
I2C in master mode. The functionality of this mode is implemented by a library
called libmpsse [64]. It is based on a general-purpose library for various FTDI chips
called libftdi [65] which interfaces the device via USB with the help of a common
library called libusb [66]. Due to its several debugging facilities, a microcontroller
development board called RN-Control [67] was chosen as I2C slave device. It is pop-
ulated with an ATmega32 [68] chip, an AVR microcontroller from Atmel. This chip
features a hardware I2C slave interface referred to as Two Wire Interface (TWI) by
its data sheet. This family of microcontrollers is programmed via USB by so-called
in-system programmers (ISP). That means, it is not required to unplug it from the
development board in order to program it. The programmer to be used is called
USBasp [69]. The whole setup is shown in figure 5.10 with the programmer on the
top left, the I2C master module on the bottom left, and the development board on
the right. The two I2C wires, the data line SDA in yellow and the clock line SCL
in blue, are connected along with the ground wire GND in green from the master
module to the slave device. The master module provides separate pins for data input
and data output, “D2” and “D1”, respectively. Since the data line SDA is input and
output as well, both pins must be connected to it. The clock signal is generated on
pin “D0” and ground is labeled “GND”. The development board exposes SDA on pin
2, SCL on pin 1, and GND on pin 9 of its port labeled “C”. Switch 1 and 2 are off
to disconnected SDA and SCL from LED 2 and LED 1, respectively. Though, the
multi-purpose FTDI chip of the master module can operate the pins “D1” and “D0”
as open drains, the library libmpsse drives them actively high to 3.3 V. But the I2C
slave module of the microcontroller operates at 5 V while the inputs of the master

5.3. TESTING THE I2C COMMUNICATION 95

module are 5 V tolerant. Thus, the internal 10 kΩ pull-up resisters of the develop-
ment board are bridged with external ones of 1 kΩ against the USB supply voltage
of 5 V to pull up the 3.3 V more aggressively.

Figure 5.10: I2C Communication Test [63, 67, 69]

For testing purpose only, a C++ application was written interfacing the I2C master
module by making use of the library libmpsse. It accepts a variable number of
hexadecimal pairs as command line arguments each representing a byte. The first
byte is the address of the slave device the following data bytes are supposed to be
written to. It expects the slave device to write back the same number of data bytes
and dumps them on the screen. The implementation of the slave device is written
in C++ as well, being totally event-driven regarding master write (MW) and master
read (MR) requests. When the master requests the slave to read its data, the slave
stores it in a fixed sized ring buffer and acknowledges each byte until its buffer
is full signifying the master that it cannot store any more data bytes. When the
master requests the slave to write data back, it starts reading its ring buffer from
the position of the firstly stored data byte of the last write transaction. The master
has to signify the slave to stop writing back by not acknowledging the last data byte.

96 CHAPTER 5. TESTS & RESULTS

This is a so-called echo check, what is written is expected to be read back and echoed
on the screen for confirmation.

When executing the test application with the slave address followed by one data byte
as command line arguments, it successfully dumped the looped back data byte on
the screen. That means, interfacing and initializing the master module is function-
ing. But subsequent invocations of the application resulted in a data byte of value
zero. This was reproducible after the slave device has been reset. Again, only the
first invocation returned the correct data byte while subsequent ones were of value
zero. Since the first byte has always been transferred correctly, it was not a prob-
lem of the I2C hardware or its wiring. Thus, it had to be a faulty implementation.
For further debugging information, the LED array of the development board is well
suited to represent small integer numbers with little programming effort. To mon-
itor the slave device regarding a write request of the master, the calls of the slave
write routine were counted and visualized with help of the LEDs by switching on one
after the other each call. For normal operation, each invocation of the application
with one data byte as argument would switch on one additional LED. Surprisingly,
after the first invocation, two LEDs were lightning. Thus, the zero valued bytes have
been caused by reading them from the wrong position of a zero value initialized ring
buffer since a call of the slave write routine increments a position counter running
away from its supposed position due to the additional unintended call of the slave
write routine. It turned out that the master read routine of the library libmpsse
acknowledges all requested bytes including the last one. Acknowledging a byte in
master read mode is interpreted as a request to write another byte in slave write
mode. This caused the additional routine call. Instead of having an additional ar-
gument defined for the master read routine to prevent acknowledging the last byte,
the library libmpsse defines two additional functions, one for disabling and one for
enabling acknowledgement of all subsequent bytes. In order to read a variable num-
ber of data bytes, two calls are necessary. The first call reads all except the last byte,
then acknowledgment is disabled and the last byte is read by the second call. After
having this corrected, all was functioning as expected. Also multiple data bytes as
command line arguments were successfully transferred. The I2C clock speed was be-
ing increased up to roughly 200 kbit/s until transactions began to fail, giving a safety
margin for this setup of roughly factor 2 regarding the clock speed for the standard
mode of 100 kbit/s.

After having confirmed the functionality of the I2C master module, this application
was used as template to implement the abstract hardware interface of the library
libsi53xx of section §4.3. By choosing this implementation with a command line

5.4. CONTROLLING THE CLOCK GENERATOR 97

argument of the application si53xx, it can control the clock generator via this I2C
master module.

5.4 Controlling the Clock Generator

Controlling the clock generator was tested with the help of the Si5338 evaluation
board from Silicon Labs, shown in figure 5.11. It exposes its input and output clocks
via SMA connectors. The ClockBuilder Desktop Software from Silicon Labs can con-
nect to the clock generator populated in the center of this board via USB, serving
also as power supply. A microcontroller unit (MCU) of the board does the USB to
I2C translation. The I2C master of the MCU can be disconnected from the clock
generator by removing the two jumpers, one for the I2C data and the other for the
I2C clock, of the header labeled “J19”. In this way, an external I2C master can be
injected by plugging the yellow and blue colored wires of the connector on the left of
figure 5.11 to this header while its green colored ground is wired to the connector
labeled “GND”. Four status LEDs are present on the top left labeled “RDY”, “I2C”,
“USB”, and “INTR” from top to bottom, the first three light green and the last one
red. “RDY” indicates the board is operating normally. “I2C” and “USB” each visual-
ize activity of their bus. “INTR” lights if the clock generator triggered its interrupt
pin customizable by an interrupt mask as described in section §4.3.

98 CHAPTER 5. TESTS & RESULTS

Figure 5.11: Si5338 Evaluation Board [54]

5.4.1 Built-in Routines

Firstly, the built-in routines of the application si53xx of section §4.3 were tested
with an external I2C module, which itself has previously been tested in section §5.3.
As shown in figure 5.12, no clocks are connected for this setup. Since the default
configuration of the clock generator expects a differential input clock on the connec-
tors “IN1” and “IN2”, it has thrown the error flag “LOS_CLKIN”, loss of clock input,
which caused the red interrupt LED to light.

5.4. CONTROLLING THE CLOCK GENERATOR 99

Figure 5.12: Control via External I2C Module [63, 54]

One built-in routine, --get-part-number, reads specific registers of the Si5338 de-
vice to construct its part number while another one, --get-status, reads the sta-
tus register made up of the four error flags. A part number is constituted of three
strings separated by “-”. The first one starts with “Si53” followed by a base num-
ber of two digits plus a character representing the speed grade. The second one
starts with a character representing the revision ID followed by the NVM code of
the programmed default configuration. The third one is “GM”. An NVM code can
be obtained by registering a default configuration at Silicon Labs. As shown in fig-
ure 5.13, the application dumps each I2C transaction per line in hexadecimal pairs
representing a byte of 8 bits for debugging and confirmation purpose on the screen,
followed by the result of the routine prepended by “##”. With the default 7-bit slave
address of the clock generator of 70 in hexadecimals followed by the direction bit,
“0” for writing and “1” for reading, a line begins either with e0 or e1, respectively.
That is the slave address shifted by one bit to the left plus the direction bit as least
significant bit (LSB), as described in section 3.1.2. The first invocation of routine
--get-part-number was done while the device was not being connected. Normally,
an I2C master module would abort and complain about the slave address not being

100 CHAPTER 5. TESTS & RESULTS

acknowledged. The implementation of the external I2C module selected by option
--port ignores this error. Due to the pull-up resistor of the I2C data line, bits of
logical “1” were permanently being read, which resulted in bytes of value ff. This
is a pseudo part number with base number of “63” and a speed grade of “H” while
values of ff are out of the defined ranges for revision ID and NVM code but caught
by the library libsi53xx and substituted with “_” and “?????”, respectively. With a
connected evaluation board, the part number has correctly been constructed. The
device has a base number of “38”, is of speed grade “N” with revision ID of “B”, and
does not have the NVM programmed represented by “00000”. To read the register
values for the part number, their register addresses must be written to the device
firstly. In this case, a continuous sequence of six registers, that is having incremen-
tal addresses, was detected and read in burst mode. Thus, only the first register
address of the sequence has been written, e0 00. Then the six register values have
been read by a single I2C transaction, e1 01 00 26 70 00 00, dumped on a single
line.

Figure 5.13: Part Number & Status

The invocation of routine --get-status reports the four error flags. Since no clock
input is given, it reports “los_clkin=1”, loss of clock input, as expected. This er-
ror flag can be ignored by manipulating the interrupt mask appropriately which

5.4. CONTROLLING THE CLOCK GENERATOR 101

would switch off the red interrupt LED. As shown in figure 5.14, the interrupt sta-
tus was read, confirming the lighting red LED. Afterwards, the interrupt mask was
read. All error flags were set, that means, they were armed for possible trigger-
ing the interrupt pin. Now, the flag “los_clkin” was disarmed by invoking routine
--set-interrupt-mask with “los_clkin=0” as argument. The red interrupt LED was
immediately switched off, confirming the last invocation of routine --get-interrupt
which reported that the interrupt status had been reset.

Figure 5.14: Interrupt Mask

This test is a success. It has demonstrated that the built-in routines are functioning
as expected. That means, the register descriptions of the Si5338 reference manual
[51] along with the single read, single write, and read-modify-write routines are
correctly implemented. Detection of register sequences with incremental addresses
followed by a burst read has been confirmed as well.

5.4.2 Register & Transition Maps

This setup, shown in figure 5.15, has tested the dynamic control of an output clock
derived from an input clock by modifying the device configuration with register map

102 CHAPTER 5. TESTS & RESULTS

files. In the meantime, the mezzanine card of section §3.2 was available and the
test described in section §5.3 had been repeated to confirm its I2C connectivity.
Afterwards, an implementation for the abstract hardware interface of the library
libsi53xx of section §4.3 was written. The application si53xx chooses it as default
if not otherwise specified by the option --port. This implementation is not spe-
cific for the mezzanine card. Instead, it is based on a mainline kernel driver called
i2c-dev [70] available for other CPU architectures as well. This module can be mon-
itored and configured by a common software package called i2c-tools [71], hence
the name i2c2l was chosen for this implementation with “2l” pronounced “tool”.

Figure 5.15: Control via Internal I2C Module [17, 54]

By default, the daughter module of the mezzanine card, does not expose its I2C
master module being multiplexed with an embedded MultiMediaCard (eMMC) con-
troller. To select it, the positions of two resistor jumpers labeled “JT5” and “JT6”,
shown at the bottom of figure 5.16, were changed both from position “1-2” to “2-3” as
described in the hardware user guide [17] of the PicoZed.

5.4. CONTROLLING THE CLOCK GENERATOR 103

Figure 5.16: Multiplexer Select Exposing Internal I2C Master Module [17]

Two SMA cables of figure 5.15 were used to serve the input clock on connector “IN3”
generated by a function generator [72] and to monitor the output clock on connector
“CLK3A” with a digital oscilloscope [73] on channel 3. The input clock was actually
generated twice to be monitored on channel 1 of the oscilloscope as well. Both single-
ended square wave signals of 40.0787 MHz with peak-to-peak amplitude of 0.6 V of
the input clock were confirmed to be synchronous. The output clock was driven as
stub series terminated logic (SSTL) with peak-to-peak amplitude of 1.8 V. Since the
output drivers of the function generator and clock generator have resistances of 50Ω

and the probes of the oscilloscope are terminated with 50Ω as well, the amplitudes
of the signals are expected to be halved. The configuration of the clock generator
was created with the help of the ClockBuilder Desktop Software and saved as C
code header file. Afterwards, it was converted with the script si53xx-map resulting
in a file named “default.map”. It generates an output clock of identical frequency of
the input clock. The application si53xx finally wrote the register map to the clock
generator, as shown in figure 5.17. The first twenty lines are dumped to the screen.
The line e0 1c 0b 49 b0 e3 e3 e3 c0 80 is a burst write of a sequence of eight
registers with the first register address of 1c.

104 CHAPTER 5. TESTS & RESULTS

Figure 5.17: Default Register Map

In figure 5.18, the output clock signal generated by the clock generator is drawn blue
while the input clock signal is drawn yellow. The oscilloscope is capable of measur-
ing frequencies. For the input clock a mean frequency of roughly 40.0785 MHz and
for the output clock a mean frequency of roughly 40.0792 MHz are measured. Due to
possible jitter, a short time span to calculate the mean values, and a limited accu-
racy of the clock generator and the oscilloscope, there are slight deviations from the
supposed frequency of 40.0787 MHz. But it confirms that the default configuration
has correctly been written to the clock generator and that a burst write has correctly
been detected and performed.

5.4. CONTROLLING THE CLOCK GENERATOR 105

Figure 5.18: Default Clock Frequency [73]

Now, the output clock frequency was supposed to be doubled to 80.1574 MHz. The
same steps were done to create an appropriate register map file but this time it
was named “clk3@80.map”. Instead of writing the whole register map file, a pair of
transition map files was created with the script si53xx-cmp. It generated two files,
“clk3@80.pos” and “clk3@80.neg”, containing only the differences of the register map
files “default.map” and “clk3@80.map”. Former contains the registers necessary to
be written to switch to the doubled clock frequency while latter contains the regis-
ters necessary to be written to switch back to the original clock frequency. The ap-
plication si53xx was invoked with the transition map file “clk3@80.pos”, as shown
in figure 5.19. All registers, written to the device, are dumped on the screen. In gen-
eral, before register maps are being written, the device is disarmed. That means,
its outputs are disabled and the LOL state machine is paused. After one or more
register maps have been written, the device is armed again. That means, the input
clocks are validated, the PLL is locked to the input clock with its new configura-
tion, the voltage-controlled oscillator (VCO) is recalibrated, the LOL state machine
is resumed, and the outputs are enabled again.

106 CHAPTER 5. TESTS & RESULTS

Figure 5.19: Positive Transition Map

In this case the transition map contains only three I2C transactions. The result-
ing output clock is drawn, again in blue, in figure 5.20. Its frequency measuring
reported roughly 80.1595 MHz. Apart from a slight deviation, this is the expected
doubled clock frequency. Thus, the positive transition map file has correctly been
generated and written to the device. The implementations of the arm and disarm
routines have successfully recalibrated the device.

5.4. CONTROLLING THE CLOCK GENERATOR 107

Figure 5.20: Doubled Clock Frequency [73]

Finally, the negative transition map file was written, as shown in figure 5.21. Again,
only three I2C transactions are required. The same registers of addresses 30, 57, and
62 have been written. But this time with different values compared with the positive
transition map file. The output clock frequency has correctly been restored to the
original one.

108 CHAPTER 5. TESTS & RESULTS

Figure 5.21: Negative Transition Map

This test has successfully demonstrated the functionality of controlling the clock
generator by the application si53xx. It was possible to write register as well as tran-
sition maps. The conversion and comparison scripts, si53xx-map and si53xx-cmp,
successfully complement the control application si53xx.

Chapter 6

Conclusion & Outlook

The designed mezzanine card of section §3.3 is capable of booting into a terminal
login prompt. Thus, the schematics correctly interface its core components. All
modifications to the boot image and the root file system of the operating system are
successfully managed with the workflow kit of section §4.1, allowing reproducible
image generation required for long-term use and maintenance. Two mistakes of the
hardware design have been made. The SD card slots have been wrongly oriented,
not pointing away from the mezzanine card. But since no high components are close
to them, SD cards can still be plugged into both slots. Another drawback is the
lack of a button triggering a soft reset of the Zynq chip. Instead, when debugging
the stopping of the boot process, hard resets were being made by unplugging and
replugging the external power supply.

The hybrid approach, that is having both a CPU and an FPGA inside a single chip,
gives valuable advantages by having an operating system running on the CPU with
a whole ecosystem of applications and libraries. This allows the developed software
packages to reuse general-purpose functionalities implemented by proven libraries.
Furthermore, it allows the bit stream files for programming the processor FPGAs
to be stored on a local SD card managed by common tools of the operating system.
Communication channels between CPU and FPGA have successfully been estab-
lished with the file transfer application of section §4.2. The achieved throughput
rates with a maximum write rate of (9.737 ± 0.019) MB/s fulfill the requirement of
programming all four processor FPGAs in a reasonable amount of time. The jFEX
can be programmedwithin less than aminute, (32.86± 0.07)s to be precisely. Remote
updates of bit stream files and software applications are transferred over Ethernet
via CPU, managed by the workflow kit as well. This facilitates maintenance and de-
velopment processes by not unplugging and replugging the SD card for every single

109

110 CHAPTER 6. CONCLUSION & OUTLOOK

modification. Among these advantages of TCP based connectivity done by the CPU,
the hybrid approach simultaneously allows the required UDP based IPBus commu-
nication for controlling the FPGA. As a precautionary measure regarding possible
future changes to the central control interface of section 3.1.1, TCP based control is
possible as well by connecting the Ethernet cable from the Ethernet jack of the back-
plane to the Ethernet jack of the CPU instead of the one of the FPGA. In this case,
the Ethernet jack of the CPU would not only be used as a separate maintenance and
development interface. Instead, it would additionally serve as control interface but
accessed through the backplane. Since software development was focused on us-
ability and extensibility, implementations like the CPU/FPGA communication have
been externalized into libraries. This would allow TCP based control communica-
tion to be easily routed from CPU to FPGA with the same library used by the file
transfer application.

The I2C connectivity of the mezzanine card has successfully been used to control
the clock generator with the software package of section §4.3. Due to the fact that
software has been structured from abstract interfaces down to concrete implementa-
tions, it was possible to interface the clock generator via internal as well as external
I2C modules with little programming effort. The external I2C module served as ini-
tial test device for general I2C communication as well as alternative to the, at that
time not yet available, mezzanine card for debugging the software package. The two
scripts of this software package allow the management of whole device configura-
tions and the generation of transition maps from one configuration to another. They
successfully complement the control application by individually extracting a single
feature of interest from a whole device configuration in order to enable or disable it.

The next steps are to confirm the correctness of the schematics interfacing the PHY
of the mezzanine card for Ethernet communication via FPGA and to control further
components of the jFEX like its power modules. The former step is required before
producing the second iteration of the mezzanine card. That iteration will be plug-
gable onto the jFEX since in the meantime the pin layout of its header has been
finalized.

Bibliography

[1] The ATLAS Collaboration: The ATLAS Experiment at the CERN Large
Hadron Collider (2008 JINST 3 S08003 – August 14, 2008)
https://cdsweb.cern.ch/record/1129811/files/jinst8_08_s08003.pdf

[2] CERN: The Large Hadron Collider – Facts (CERN Brochure – 2009)
https://cds.cern.ch/record/1165534/files/CERN-Brochure-2009-003-Eng.

pdf

[3] Matilda Heron – CERN: ATLAS and CMS experiments shed light on Higgs
properties (2015-09-01)
https://cds.cern.ch/record/2059194

[4] The ATLAS Collaboration: Technical Design Report for the Phase-I Upgrade
of the ATLAS TDAQ System (CERN-LHCC-2013-018, ATLAS-TDR-023 – 30
November 2013)
https://cds.cern.ch/record/1602235/files/ATLAS-TDR-023.pdf

[5] Ivana Hristova, The ATLAS Collaboration: The Phase-I Upgrade of the
ATLAS First Level Calorimeter Trigger (L1Calo) – Technology and Instru-
mentation in Particle Physics (TIPP) – International Conference (2-6 June
2014, Amsterdam)
https://indico.cern.ch/event/192695/contributions/353430/

attachments/277277/387894/TIPP14_hristova.pdf

[6] Sebastian Artz, Stefan Rave, Ulrich Schäfer, Esteban Torregrosa: Technical
Specification – ATLAS Level-1 Calorimeter Trigger Upgrade – Jet Feature Ex-
tractor (jFEX) Prototype (Draft, Version: 0.3 – ~ October 2014)
http://www.staff.uni-mainz.de/rave/jFEX_PDR/jFEX_spec_v0.3.pdf

[7] Dan Noyes – CERN: About CERN (2012-01-19)
https://cds.cern.ch/record/1997225

111

https://cdsweb.cern.ch/record/1129811/files/jinst8_08_s08003.pdf
https://cds.cern.ch/record/1165534/files/CERN-Brochure-2009-003-Eng.pdf
https://cds.cern.ch/record/1165534/files/CERN-Brochure-2009-003-Eng.pdf
https://cds.cern.ch/record/2059194
https://cds.cern.ch/record/1602235/files/ATLAS-TDR-023.pdf
https://indico.cern.ch/event/192695/contributions/353430/attachments/277277/387894/TIPP14_hristova.pdf
https://indico.cern.ch/event/192695/contributions/353430/attachments/277277/387894/TIPP14_hristova.pdf
http://www.staff.uni-mainz.de/rave/jFEX_PDR/jFEX_spec_v0.3.pdf
https://cds.cern.ch/record/1997225

112 BIBLIOGRAPHY

[8] Ian Brawn: L1Calo Phase I Status – eFEX, jFEX & gFEX, Hub & ROD, TREX,
Link-Speed Tests, Firmware Management, Schedule (TDAQ Week – 25 May
2016)
https://indico.cern.ch/event/464852/contributions/2177460/

attachments/1278755/1898686/L1Calo_160525_TDAQ.pdf

[9] Xilinx, Inc.: UltraScale Architecture GTH Transceivers – User Guide (UG576,
v1.3 – November 24, 2015)
http://www.xilinx.com/support/documentation/user_guides/

ug576-ultrascale-gth-transceivers.pdf

[10] Xilinx, Inc.: UltraScale Architecture Configuration – User Guide (UG570, v1.6
– December 16, 2015)
http://www.xilinx.com/support/documentation/user_guides/

ug570-ultrascale-configuration.pdf

[11] NXP Semiconductors N.V.: I2C-bus specification and user manual (UM10204,
Rev. 6 – 4 April 2014)
https://www.nxp.com/documents/user_manual/UM10204.pdf

[12] The Internet Engineering Task Force: Transmission Control Protocol (RFC 793
– September 1981)
https://www.ietf.org/rfc/rfc793.txt

[13] The Internet Engineering Task Force: User Datagram Protocol (RFC 768 – 28
August 1980)
https://www.ietf.org/rfc/rfc768.txt

[14] Robert Frazier, Greg Iles, Dave Newbold, Andrew Rose: The IPbus Protocol &
The IPbus Suite (Talk: TIPP 2011 – 09/06/11)
https://indico.cern.ch/event/102998/contributions/17149/attachments/

10532/15402/TIPP_Frazier_09_06_2011.pdf

[15] Linear Technology Corporation: RS-232 Single and Dual Transceivers –
LTC2801/LTC2802/LTC2803/LTC2804 (2801234fe)
https://cds.linear.com/docs/en/datasheet/2801234fe.pdf

[16] Silicon Laboratories, Inc. (Silicon Labs): Single-Chip USB-to-UART Bridge
(CP2104, Rev. 1.1 – 11/2013)
https://www.silabs.com/Support%20Documents/TechnicalDocs/cp2104.pdf

[17] Avnet, Inc.: PicoZed Z7015 / Z7030 SOM (System-On Module) – Hardware
User Guide (Version 1.5 – 3/11/16)

https://indico.cern.ch/event/464852/contributions/2177460/attachments/1278755/1898686/L1Calo_160525_TDAQ.pdf
https://indico.cern.ch/event/464852/contributions/2177460/attachments/1278755/1898686/L1Calo_160525_TDAQ.pdf
http://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
http://www.xilinx.com/support/documentation/user_guides/ug576-ultrascale-gth-transceivers.pdf
http://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
http://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.nxp.com/documents/user_manual/UM10204.pdf
https://www.ietf.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc768.txt
https://indico.cern.ch/event/102998/contributions/17149/attachments/10532/15402/TIPP_Frazier_09_06_2011.pdf
https://indico.cern.ch/event/102998/contributions/17149/attachments/10532/15402/TIPP_Frazier_09_06_2011.pdf
https://cds.linear.com/docs/en/datasheet/2801234fe.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/cp2104.pdf

BIBLIOGRAPHY 113

http://zedboard.org/sites/default/files/documentations/PicoZed%

207015_7030_User%27s_Guide_v1.5.pdf

[18] Xilinx, Inc.: Zynq-7000 All Programmable SoC Overview – Product Specifica-
tion (DS190, v1.9 – January 20, 2016)
http://www.xilinx.com/support/documentation/data_sheets/

ds190-Zynq-7000-Overview.pdf

[19] Avnet, Inc.: MicroZed Zynq™ Evaluation and Development and System on
Module – Hardware User Guide (Version 1.6 – 22 January 2015)
http://zedboard.org/sites/default/files/documentations/MicroZed_HW_

UG_v1_6.pdf

[20] Texas Instruments Inc. (TI): TPS82085 – 3-A High Efficiency Step-Down Con-
verter MicroSiP™ with Integrated Inductor (SLVSCN4B – October 2014 – Re-
vised August 2015)
https://www.ti.com/lit/ds/symlink/tps82085.pdf

[21] Xilinx, Inc.: AR# 47817 – Design Advisory for the Kintex-7 and Virtex-7 GTX
Transceiver Power-up/Power-down (02/18/2013)
http://www.xilinx.com/support/answers/47817.html

[22] Texas Instruments Inc. (TI): TXS02612 – SDIO Port Expander with Voltage-
Level Translation (SCES682C – December 2008 – Revised February 2009)
https://www.ti.com/lit/ds/symlink/txs02612.pdf

[23] Xilinx, Inc.: AR# 43989 – 7 Series FPGAs - LVDS_33, LVDS_25, LVDS_18,
LVDS inputs & outputs for High Range (HR) and High Performance (HP) I/O
banks (10/14/2014)
http://www.xilinx.com/support/answers/43989.html

[24] Serial ATA International Organization (SATA-IO): Technical Overview
https://www.sata-io.org/technical-overview

[25] Institute of Electrical and Electronics Engineers (IEEE): 1149.1-2013 – IEEE
Standard for Test Access Port and Boundary-Scan Architecture
https://standards.ieee.org/findstds/standard/1149.1-2013.html

[26] David MacKenzie, Tom Tromey, Alexandre Duret-Lutz, Ralf Wildenhues, Ste-
fano Lattarini: GNU Automake – Manual (For Version 1.15 – 31 December
2014)
https://www.gnu.org/software/automake/manual/automake.pdf

http://zedboard.org/sites/default/files/documentations/PicoZed%207015_7030_User%27s_Guide_v1.5.pdf
http://zedboard.org/sites/default/files/documentations/PicoZed%207015_7030_User%27s_Guide_v1.5.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf
http://zedboard.org/sites/default/files/documentations/MicroZed_HW_UG_v1_6.pdf
http://zedboard.org/sites/default/files/documentations/MicroZed_HW_UG_v1_6.pdf
https://www.ti.com/lit/ds/symlink/tps82085.pdf
http://www.xilinx.com/support/answers/47817.html
https://www.ti.com/lit/ds/symlink/txs02612.pdf
http://www.xilinx.com/support/answers/43989.html
https://www.sata-io.org/technical-overview
https://standards.ieee.org/findstds/standard/1149.1-2013.html
https://www.gnu.org/software/automake/manual/automake.pdf

114 BIBLIOGRAPHY

[27] Debian Project: Debian “jessie” Release Information
https://www.debian.org/releases/jessie/

[28] Xilinx, Inc.: PetaLinux Tools (2015.4 – Dec 15, 2015)
http://www.xilinx.com/petalinux

[29] Xilinx, Inc.: Vivado Design Suite (2015.4 – Nov 18, 2015)
http://www.xilinx.com/vivado

[30] John Ousterhout, Tcl Core Team: Tool Command Language (TCL)
https://www.tcl.tk/

[31] Richard M. Stallman, Roland McGrath, Paul D. Smith: GNU Make – Manual
(Version 4.1 – September 2014)
https://www.gnu.org/software/make/manual/make.pdf

[32] Xilinx, Inc.: Build FSBL
http://www.wiki.xilinx.com/Build+FSBL

[33] DENX Software Engineering: Das U-Boot - The Universal Boot Loader
http://www.denx.de/wiki/U-Boot

[34] Linaro Engineering Organization: The Devicetree Specification
http://www.devicetree.org/

[35] Linux Kernel Organization, Inc.: The Linux Kernel Archives
https://www.kernel.org/

[36] J. W. Hunt – Department of Electrical Engineering - Stanford University, M.
D. McIlroy – Bell Laboratories: An Algorithm for Differential File Comparison
http://www.cs.dartmouth.edu/~doug/diff.pdf

[37] Chet Ramey – Case Western Reserve University, Brian Fox – Free Software
Foundation: Bash Reference Manual (For Version 4.3 – February 2014)
https://www.gnu.org/software/bash/manual/bash.pdf

[38] Andrew Tridgell, Paul Mackerras – Department of Computer Science - Aus-
tralian National University: The rsync algorithm (1998-11-09)
https://rsync.samba.org/tech_report/tech_report.html

[39] OpenBSD Project: OpenSSH
http://www.openssh.com/

https://www.debian.org/releases/jessie/
http://www.xilinx.com/petalinux
http://www.xilinx.com/vivado
https://www.tcl.tk/
https://www.gnu.org/software/make/manual/make.pdf
http://www.wiki.xilinx.com/Build+FSBL
http://www.denx.de/wiki/U-Boot
http://www.devicetree.org/
https://www.kernel.org/
http://www.cs.dartmouth.edu/~doug/diff.pdf
https://www.gnu.org/software/bash/manual/bash.pdf
https://rsync.samba.org/tech_report/tech_report.html
http://www.openssh.com/

BIBLIOGRAPHY 115

[40] Mel Gorman – Linux Kernel Organization, Inc.: Understanding The Linux
Virtual Memory Manager (July 9, 2007)
https://www.kernel.org/doc/gorman/pdf/understand.pdf

[41] Andries Brouwer, Michael Kerrisk: Linux Programmer’s Manual – MMAP
(2016-03-15)
http://man7.org/linux/man-pages/man2/mmap.2.html

[42] David S. Miller, Richard Henderson, Jakub Jelinek: Dynamic DMA mapping
Guide
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

[43] Xilinx, Inc.: AXI GPIO v2.0 – LogiCORE IP Product Guide – Vivado Design
Suite (PG144 – November 18, 2015)
http://www.xilinx.com/support/documentation/ip_documentation/axi_

gpio/v2_0/pg144-axi-gpio.pdf

[44] Arseny Kapoulkine: pugixml – Light-weight, simple and fast XML parser for
C++ with XPath support (1.7 release – 19 October 2015)
http://pugixml.org/

[45] World Wide Web Consortium (W3C): Extensible Markup Language (XML) 1.0
(Fifth Edition) – W3C Recommendation (26 November 2008)
https://www.w3.org/TR/2008/REC-xml-20081126/

[46] C++ Reference
http://en.cppreference.com/w/cpp

[47] Richard M. Stallman and the GCC Developer Community: Using the GNU
Compiler Collection – 6.42 An Inline Function is As Fast As a Macro (For Ver-
sion 6.1.0)
https://gcc.gnu.org/onlinedocs/gcc-6.1.0/gcc.pdf

[48] Richard M. Stallman and the GCC Developer Community: Using the GNU
Compiler Collection – 6.44.2 Extended Asm - Assembler Instructions with C
Expression Operands (For Version 6.1.0)
https://gcc.gnu.org/onlinedocs/gcc-6.1.0/gcc.pdf

[49] Institute of Electrical and Electronics Engineers (IEEE): 1076-2008 – IEEE
Standard VHDL Language Reference Manual
https://standards.ieee.org/findstds/standard/1076-2008.html

https://www.kernel.org/doc/gorman/pdf/understand.pdf
http://man7.org/linux/man-pages/man2/mmap.2.html
https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt
http://www.xilinx.com/support/documentation/ip_documentation/axi_gpio/v2_0/pg144-axi-gpio.pdf
http://www.xilinx.com/support/documentation/ip_documentation/axi_gpio/v2_0/pg144-axi-gpio.pdf
http://pugixml.org/
https://www.w3.org/TR/2008/REC-xml-20081126/
http://en.cppreference.com/w/cpp
https://gcc.gnu.org/onlinedocs/gcc-6.1.0/gcc.pdf
https://gcc.gnu.org/onlinedocs/gcc-6.1.0/gcc.pdf
https://standards.ieee.org/findstds/standard/1076-2008.html

116 BIBLIOGRAPHY

[50] Silicon Laboratories, Inc. (Silicon Labs): Si5338 – I2C-Programmable Any-
Frequency, Any-Output Quad Clock Generator (Si5338, Rev. 1.6 – 12/2015)
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338.pdf

[51] Silicon Laboratories, Inc. (Silicon Labs): Si5338 Reference Manual – Configur-
ing the Si5338 Without ClockBuilder Desktop (Si5338-RM, Rev. 1.3 – 8/2014)
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338-RM.

pdf

[52] Silicon Laboratories, Inc. (Silicon Labs): Jump Start: In-System, Flash-Based
Programming for Silicon Labs’ Timing Products (AN428, Rev. 0.6 – 10/2010)
https://www.silabs.com/Support%20Documents/TechnicalDocs/AN428.pdf

[53] Silicon Laboratories, Inc. (Silicon Labs): Si5338/35/34/56 ClockBuilder Desk-
top Software (Version 6.4 – October 8, 2014)
http://www.silabs.com/Support%20Documents/Software/

ClockBuilderDesktopSwInstall.zip

[54] Silicon Laboratories, Inc. (Silicon Labs): Si5330/34/35/38 Evaluation Board
User’s Guide (Si5338-EVB, Rev. 1.4 – 11/2011)
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338-EVB.

pdf

[55] Silicon Laboratories, Inc. (Silicon Labs): Si5338/Si5356 Field Programmer Kit
User’s Guide (Si5338/56-PROG-EVB, Rev. 0.4 – 06/2010)
https://www.silabs.com/Support%20Documents/TechnicalDocs/

Si5338-56-PROG-EVB.pdf

[56] Silicon Laboratories, Inc. (Silicon Labs): Si5356 – I2C-Programmable, Any-
Frequency 1-200 MHz, Quad Frequency 8-Output Clock Generator (Si5356A,
Rev. 1.3 – 2014)
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5356A.pdf

[57] C Reference
http://en.cppreference.com/w/c

[58] Free Software Foundation, Inc.: sed, a stream editor (For Version 4.2.1 – Au-
gust 24, 2010)
https://www.gnu.org/software/sed/manual/sed.html

[59] Richard M. Stallman and the GCC Developer Community: Using the GNU
Compiler Collection (For Version 4.9.3)
https://gcc.gnu.org/onlinedocs/gcc-4.9.3/gcc.pdf

https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338-RM.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338-RM.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/AN428.pdf
http://www.silabs.com/Support%20Documents/Software/ClockBuilderDesktopSwInstall.zip
http://www.silabs.com/Support%20Documents/Software/ClockBuilderDesktopSwInstall.zip
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338-EVB.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338-EVB.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338-56-PROG-EVB.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5338-56-PROG-EVB.pdf
https://www.silabs.com/Support%20Documents/TechnicalDocs/Si5356A.pdf
http://en.cppreference.com/w/c
https://www.gnu.org/software/sed/manual/sed.html
https://gcc.gnu.org/onlinedocs/gcc-4.9.3/gcc.pdf

BIBLIOGRAPHY 117

[60] Xilinx, Inc.: Zynq-7000 All Programmable SoC – Technical Reference Manual
(UG585, v1.10 – February 23, 2015)
http://www.xilinx.com/support/documentation/user_guides/

ug585-Zynq-7000-TRM.pdf

[61] SD Association: Bus Speed (Default Speed / High Speed / UHS)
https://www.sdcard.org/developers/overview/bus_speed/index.html

[62] Xilinx, Inc.: Virtex UltraScale FPGAs Data Sheet – DC and AC Switching
Characteristics (DS893, v1.7.1 – April 4, 2016)
http://www.xilinx.com/support/documentation/data_sheets/

ds893-virtex-ultrascale-data-sheet.pdf

[63] Future Technology Devices International Ltd. (FTDI): UM232H-B USB to
Serial/Parallel Break-Out Module (UM232H-B, 1.2)
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_

UM232H-B.pdf

[64] libmpsse – MPSSE Library (v1.3)
https://github.com/devttys0/libmpsse

[65] Intra2net AG: libftdi – FTDIUSB driver with bitbangmode (Version 1.3 – 2016-
05-20)
https://www.intra2net.com/en/developer/libftdi/

[66] libusb – C library that gives applications easy access to USB devices
http://libusb.info/

[67] RN-Control – Universal AVR Controller Board
http://rn-wissen.de/wiki/index.php?title=RN-Control

[68] Atmel Corporation: ATmega32, ATmega32L – 8-bit AVR Microcontroller with
32KBytes In-System Programmable Flash (2503Q–AVR–02/11)
http://www.atmel.com/images/doc2503.pdf

[69] Thomas Fischl: USBasp – USB programmer for Atmel AVR controllers (2011-
05-28)
http://www.fischl.de/usbasp/

[70] Simon G. Vogl, Frodo Looijaard: I2C Bus – Character Device Interface (v1.9 –
2001/08/15)
https://www.kernel.org/pub/linux/kernel/people/marcelo/linux-2.4/

include/linux/i2c-dev.h

http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.sdcard.org/developers/overview/bus_speed/index.html
http://www.xilinx.com/support/documentation/data_sheets/ds893-virtex-ultrascale-data-sheet.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds893-virtex-ultrascale-data-sheet.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UM232H-B.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/Modules/DS_UM232H-B.pdf
https://github.com/devttys0/libmpsse
https://www.intra2net.com/en/developer/libftdi/
http://libusb.info/
http://rn-wissen.de/wiki/index.php?title=RN-Control
http://www.atmel.com/images/doc2503.pdf
http://www.fischl.de/usbasp/
https://www.kernel.org/pub/linux/kernel/people/marcelo/linux-2.4/include/linux/i2c-dev.h
https://www.kernel.org/pub/linux/kernel/people/marcelo/linux-2.4/include/linux/i2c-dev.h

118 BIBLIOGRAPHY

[71] Debian Project: Heterogeneous set of I2C tools for Linux (i2c-tools, 3.1.1-1)
https://packages.debian.org/jessie/i2c-tools

[72] Tektronix, Inc.: AFG3000 Series of Function, Arbitrary Waveform, and Pulse
Generators – AFG 3011 / 3021B / 3022B / 3101 / 3102 / 3251 / 3252 Datasheet
http://www.tek.com/sites/tek.com/files/media/media/resources/

AFG3000_Series_Arbitrary-Function_Generators_Datasheet_76W-18656-5.

pdf

[73] Agilent Technologies: Agilent Infiniium 90000 X-Series Oscilloscopes
http://cp.literature.agilent.com/litweb/pdf/5990-5271EN.pdf

https://packages.debian.org/jessie/i2c-tools
http://www.tek.com/sites/tek.com/files/media/media/resources/AFG3000_Series_Arbitrary-Function_Generators_Datasheet_76W-18656-5.pdf
http://www.tek.com/sites/tek.com/files/media/media/resources/AFG3000_Series_Arbitrary-Function_Generators_Datasheet_76W-18656-5.pdf
http://www.tek.com/sites/tek.com/files/media/media/resources/AFG3000_Series_Arbitrary-Function_Generators_Datasheet_76W-18656-5.pdf
http://cp.literature.agilent.com/litweb/pdf/5990-5271EN.pdf

	Cover
	Abstract
	Statutory Declaration
	Contents
	1 Overview
	2 Introduction
	2.1 Large Hadron Collider
	2.2 ATLAS Experiment
	2.2.1 Detector
	2.2.2 Trigger and Data Acquisition
	2.2.3 Calorimeter Trigger
	2.2.4 Calorimeter Trigger Upgrade

	2.3 Jet Feature Extractor

	3 Hardware Design
	3.1 Design Specification
	3.1.1 Central Control Interface
	3.1.2 Intra-Board Communication
	3.1.3 Debugging Facilities

	3.2 Conceptual Design
	3.3 First Iteration

	4 Software Development
	4.1 Workflow Kit
	4.1.1 Dependency Resolution
	4.1.2 Modification Management
	4.1.3 Development Process
	4.1.4 Toolchain Encapsulation

	4.2 CPU/FPGA Communication
	4.2.1 Communication Protocol
	4.2.2 Memory Mapping
	4.2.3 Master Implementation
	4.2.4 Slave Implementation
	4.2.5 File Transfer Application

	4.3 Clock Generation
	4.3.1 Register Map Creation
	4.3.2 Register Map Conversion
	4.3.3 Transition Map Generation
	4.3.4 Device Control

	5 Tests & Results
	5.1 Booting the Operating System
	5.2 Testing the CPU/FPGA Communication
	5.2.1 Data Integrity Verification
	5.2.2 Write Rate Measuring
	5.2.3 Read Rate Measuring

	5.3 Testing the I²C Communication
	5.4 Controlling the Clock Generator
	5.4.1 Built-in Routines
	5.4.2 Register & Transition Maps

	6 Conclusion & Outlook
	Bibliography

